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Summary (Abstract)12

Surplus production modelling has a long history as a method for managing data-limited13

fish stocks. Recent advancements have cast surplus production models as state-space14

models that separate random variability of stock dynamics from error in observed indices15

of biomass. We present a stochastic surplus production model in continuous-time (SPiCT),16

which in addition to stock dynamics also models the dynamics of the fisheries. This17

enables error in the catch process to be reflected in the uncertainty of estimated model18

parameters and management quantities. Benefits of the continuous-time state-space model19

formulation include the ability to provide estimates of exploitable biomass and fishing20

mortality at any point in time from data sampled at arbitrary and possibly irregular21

intervals. We show in a simulation that the ability to analyse sub-annual data can increase22

the effective sample size and improve estimation of reference points relative to discrete-time23

analysis of aggregated annual data. Finally, sub-annual data from five North Sea stocks are24

analysed with particular focus on using residual analysis to diagnose model insufficiencies25

and identify necessary model extensions such as robust estimation and incorporation of26

seasonality. We argue that including all known sources of uncertainty, propagation of27

that uncertainty to reference points and checking of model assumptions using residuals28

are critical prerequisites to rigorous fish stock management based on surplus production29

models.30
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1 Introduction55

Surplus production models are used to assess the biomass and exploitation level of marine56

populations in data-limited situations where age and size information are unavailable57

(Punt, 2003). By modelling the temporal evolution of the aggregated biomass targeted58

3



by fishing, surplus production models do not require information about the age or size-59

structure of the stock. Surplus production models are therefore primarily applied to60

stocks where the only data available are observations of commercial catches together with61

some index of exploitable biomass such as commercial catch-per-unit-effort (CPUE) or62

as derived from scientific survey data (Polacheck et al., 1993). Common applications of63

surplus production models include large migratory pelagic fishes such as tuna, sharks and64

billfishes (e.g. Brodziak & Ishimura, 2011; Carvalho et al., 2014), but also crustaceans65

that are generally difficult to age (e.g. Smith & Addison, 2003).66

The population dynamics represented by surplus production models builds on prin-67

ciples of logistic or the more general theta-logistic growth (Pedersen et al., 2011) resulting68

in a dome-shaped relationship between biomass production and population size. In the69

formulation of Schaefer (1954) the maximum production occurs when the population size70

is at half its carrying capacity. This restriction is avoided in the generalised form of Pella71

& Tomlinson (1969), where skewness of the production function allows maximum produc-72

tion at any biomass below the carrying capacity. Thus, a population is optimally exploited73

in terms of biomass if it is harvested to remain at the biomass level that results in the74

maximum production defined as the maximum sustainable yield (MSY ).75

It is widely recognised that the model structure of surplus production models is too76

simple to adequately describe the population dynamics of a real-world stock subject to77

variability in size structure, species interactions, recruitment, catchability, selectivity, en-78

vironmental conditions etc. (Pella & Tomlinson, 1969). To mitigate this, it is common to79

include a random error term in the equation governing the biomass dynamics as a proxy80

for unmodelled variability (process error). Similarly, it is often assumed that the biomass81

index is subject to error in sampling that causes the observed values to deviate from the82

true. This variability is incorporated by including an observation error term in the equa-83

tion describing how the index data relate to the biomass. Models including random terms84
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are often referred to as stochastic.85

While the basic deterministic formulation of surplus production models has remained86

unchanged for decades, the methods used for estimating model parameters from observa-87

tions while acknowledging random variability have undergone major developments. Least-88

squares methods for fitting production curves (Pella & Tomlinson, 1969) developed into89

more explicit assignment of noise in process-error or observation-error models (Polacheck90

et al., 1993). Key to the incorporation of random variability was the discrete-time formu-91

lation of Schnute (1977) achieved by approximating observations by annual averages. The92

majority of subsequent model extensions, with the exception of ASPIC (Prager, 1994),93

adopted the discrete-time form including state-space models that simultaneously estimate94

both process and observation error using Bayesian (Meyer & Millar, 1999) or frequentist95

approaches (Punt, 2003). ASPIC, while free of discrete-time average approximations, lacks96

flexibility owing to its deterministic population dynamics. Regardless of temporal form,97

observation error in previous models refer to error in the index observation with the often98

unstated implicit assumption that catch observations are error-free.99

The increased flexibility of state-space models, which are the variants of surplus pro-100

duction models most commonly applied today, entails a need for informative data. Thus,101

data situations with short time series or limited contrast may require that some model102

parameters are constrained or fixed to obtain model identifiability. For example, the ra-103

tio of process to observation noise is often fixed (Ono et al., 2012), while estimating the104

shape of the production curve is commonly avoided by assuming the symmetric form of105

Schaefer (1954). Constraining estimation by fixing model parameters affects estimates of106

remaining free parameters, some of which are directly related to management quantities.107

Thus, assessing the sensitivity of results to assumed constraints is an important aspect of108

surplus production modelling, which if ignored may lead to poor management.109

Stochastic surplus production models aim to account for autocorrelation inherent in110
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time series data of catches and biomass indices. This implies that the recursive, or so111

called one-step-ahead, residuals of a model fit are assumed to be standard normally dis-112

tributed and independent. While this is a well-known property of many time series models113

(Ljung & Box, 1978), assessing the validity of these assumptions is often ignored when114

fitting stochastic surplus production models. This is problematic as residual patterns can115

indicate violation of model assumptions, which potentially invalidates model estimates and116

associated confidence intervals thus conveying a misleading impression of stock status.117

We present a stochastic surplus production model in continuous-time (SPiCT), which118

incorporates dynamics in both biomass and fisheries and observation error of both catches119

and biomass indices. The model has a general state-space form that as special cases con-120

tain process and observation-error models (Polacheck et al., 1993; Prager, 1994) as well as121

state-space models that assume error-free catches (Meyer & Millar, 1999; Punt, 2003; Ono122

et al., 2012). Seasonal extensions to the fisheries dynamics component of the state-space123

model are also developed facilitating the use of sub-annual data that contain seasonal pat-124

terns. Estimation performance, as a function of the number of available observations and125

under model misspecifications, is evaluated through simulation experiments. Differences126

in performance between discrete-time and continuous-time models are assessed both in a127

simulation experiment and by analysing the South Atlantic albacore data set of Polacheck128

et al. (1993) and comparing with previously published results from discrete-time models.129

Finally, we analyse five North Sea stocks using quarterly resolved data with emphasis on130

the use of one-step-ahead residuals for detecting possible lack of model fit.131
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2 Methods132

2.1 Model formulation133

Generalised surplus production models in the form of Pella & Tomlinson (1969) can be134

written as135

dBt
dt

=
r

n− 1
Bt

(
1−

[
Bt
K

]n−1
)
− FtBt, (1)

where Bt is the exploitable stock biomass, Ft is the instantaneous fishing mortality rate,136

r is the intrinsic growth rate of the population, K is the carrying capacity, and n > 0137

is a unitless parameter determining the shape of the production curve. In case n = 2138

the stock production reduces to rBt(1 − B/K) (Schaefer, 1954), while the limit of the139

stock production for n → 1 is rBt log(K/Bt) (Fox, 1970). The term FtBt of Eqn. (1)140

represents the instantaneous catch while the remaining part of the right-hand-side of141

Eqn. (1) represents the instantaneous biomass surplus production of the stock following a142

theta-logistic growth function (Pedersen et al., 2011). The intrinsic growth rate r models143

density-independent growth and natural mortality. The carrying capacity, K, is a density144

dependent growth penalty corresponding to the equilibrium Bt of an unexploited stock145

(Ft = 0).146

The parametrisation of Eqn. (1), while easy to interpret biologically, is difficult to147

estimate owing high correlation between r and K. Using geometric arguments related to148

the dome-shaped production curve Fletcher (1978) derived a more stable parametrisation149

dBt
dt

= γm
Bt
K
− γm

(
Bt
K

)n
− FtBt, (2)

where γ = nn/(n−1)/(n− 1) and150
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m =
rK

nn/(n−1)
(3)

The case n = 1 is a removable singularity corresponding to the model of Fox (1970).151

Estimating m instead of r results in a more well-defined optimum because of the separate152

roles of m and K in defining the production curve with K representing the width of the153

biomass range and m = MSY d representing the maximum sustainable yield (maximum154

attainable surplus production). The biomass and fishing mortality leading to maximum155

surplus production are Bd
MSY = n1/(1−n)K and F dMSY = m/BMSY . The superscript d156

indicates that these are deterministic reference points that do not account for random157

variability. If n = 1 the reference points have the limits Bd
MSY = K/e, MSY d = rK/e,158

and F dMSY = r.159

Eqn. (2) is a simplified and deterministic description of biomass dynamics. In real-160

ity many additional factors (e.g. species interactions, environmental variability) influence161

biomass dynamics. In the absence of specific data pertaining to these processes one can162

model their influence using a stochastic process noise term. Including process noise in163

Eqn. (2) results in a stochastic surplus production model in continuous-time (SPiCT)164

dBt =

(
γm

Bt
K
− γm

[
Bt
K

]n
− FtBt

)
dt+ σBBtdWt, (4)

where σB is the standard deviation of the process noise, and Wt is Brownian motion.165

Representing surplus production by a stochastic differential equation (SDE, Øksendal,166

2013) acknowledges the presence of random and unmodelled process variability, while167

retaining the property that the process is defined continuously in time and not restricted168

to specific discrete time points.169

The process noise of Eqn. (4) is multiplicative owing to the presence of Bt in the noise170

term σBBtdWt. Multiplicative noise terms can, in terms of numerical implementation and171
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model fitting, lead to instability problems. By Lamperti transforming the model (Iacus,172

2009) an additive noise term is obtained173

dZt =

(
γm

K
− γm

K

[
eZt

K

]n−1

− Ft −
1

2
σ2
B

)
dt+ σBdWt, (5)

where Zt = log(Bt). Interestingly, the standard deviation of the process noise, σ2
B, now174

appears in the deterministic part of Eqn. (5) and therefore influences the reference points175

related to MSY . For n > 1, Bordet & Rivest (2014) derived the following stochastic176

reference points177

BMSY = Bd
MSY

(
1−

1 + F dMSY (n− 2)/2

F dMSY (2− F dMSY )2
σ2
B

)
, (6)

FMSY = F dMSY −
(n− 1)(1− F dMSY )

(2− F dMSY )2
σ2
B, (7)

MSY = MSY d

(
1− n/2

1− (1− F dMSY )2
σ2
B

)
. (8)

Determining whether the stochastic reference points hold for n < 1 is an area of ongoing178

research and outside the scope of the current study. It is evident that FMSY < F dMSY179

when σ2
B > 0, which implies that the presence of process noise entails a conservative180

reduction in recommended fishing pressure relative to the deterministic case, however the181

opposite behaviour is observed if Eqn. (7) is assumed to hold for n < 1. We therefore use182

the stochastic reference points when n > 1 and the deterministic reference points when183

0 < n ≤ 1.184

Subject to constant Ft, Bt has a stationary distribution (Bordet & Rivest, 2014) with185

an expected equilibrium biomass, which can be approximated by186

9



E(B∞|Ft) = K

(
1− (n− 1)

n

Ft

F dMSY

)1/(n−1)
(

1− n/2

1−
(
1− nF dMSY + [n− 1]Ft

)2σ2
B

)
.

(9)

As expected E(B∞|Ft) = K in the absence of fishing (Ft = 0) and process noise (σ2
B = 0).187

In general E(B∞|Ft) can be interpreted as a fished equilibrium, which can serve as a188

biomass predictor if current conditions remain constant.189

The majority of existing production models leave the process of commercial fishing, Ft,190

unmodelled. Discrete-time models (e.g. Punt, 2003) commonly assume that Ft = Ct/Bt191

where Ct is the observed aggregated catch in year t. This approach implicitly assumes192

that Bt and Ft represent annual averages of biomass and fishing mortality. Perhaps more193

importantly it is assumed that the catch is observed without error. If present, observation194

error in the catch will therefore propagate directly to Ft and influence conclusions regarding195

the current fishing pressure. Furthermore, previous models are only able to estimate Ft196

at times when a catch observation is available.197

An alternative approach, which addresses the above issues, is to model Ft as a separate198

and unobserved process in the same sense that Bt is unobserved, which allows Ft to be199

estimated at any time even when a catch observation is unavailable. Our general model200

for Ft is the product of a random component Gt and a seasonal component St201

Ft = StGt (10)

d logGt = σFdVt (11)

where dVt is standard Brownian motion and σF is the standard deviation of the noise.202

If only annual data are available it is not possible to estimate within-year dynamics and203

therefore St = 1 and consequently Ft = Gt. Given sub-annual data we suggest two models204

for seasonal variation in the fishing. The first model represents seasonal variation using205
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a cyclic spline, while the second model uses a system of SDEs whose solutions oscillate206

periodically. In the case of the seasonal spline Ft follows the model207

Ft = exp(Ds(t))Gt (12)

where Ds(t) is a cyclic B-spline with a period of one year with s(t) ∈ [0; 1] being a mapping208

from t to the proportion of the current year that has passed. The possible annual variation209

allowed by the cyclic B-spline is determined by a chosen number of so-called knots. The210

number of knots must be smaller than or equal to the number of catch observations per211

year (e.g. quarterly catches can at most accommodate four temporally equidistant knots).212

The values of the cyclic B-spline is defined by the parameter vector φ of length equal to213

the number of knots minus one. In the case of annual data (one knot) the cyclic B-spline214

reduces to a constant (Ds(t) = 1) and φ has zero length and is therefore not estimated.215

Note that the seasonal pattern represented by the spline remains constant in time. Thus,216

a spline-based model is not able to adapt to changes in amplitude and timing (phase) of217

the real seasonal fishing pattern. Such variations in the fishing pattern would, when fitted218

with a spline-based model, likely lead to autocorrelated catch residuals.219

A way to overcome the potential problems of the spline-based seasonal model is to220

construct a model that uses the current state and the state a year ago to predict the221

future state. In discrete-time such a seasonal correlation structure is readily implemented222

by including the state at appropriate temporal lags, however in continuous-time obtaining223

such a correlation structure is more complicated. An approximation of this structure is to224

use a system of coupled SDEs, which perturb each other resulting in oscillating solutions.225

A simple form of such a system is226
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dU1,t = −(λU1,t + ωU2,t)dt+ σUdX1,t (13)

dU2,t = −(λU2,t − ωU1,t)dt+ σUdX2,t (14)

where dX1,t and dX2,t are standard Brownian motion, σU is the standard deviation of the227

noise, ω is a phase parameter set such that the period of the cycles is one year, and λ > 0228

is a damping parameter that ensures that the process is stationary. The solution to the229

SDE system is known analytically to be oscillatory (Gardiner, 1985), thus U1,t can be used230

to represent seasonal variation in Ft by the following expression231

Ft = exp(U1,t)Gt. (15)

One can therefore think of U2,t as a slave state that is not used directly to calculate Ft as232

it only enters through its coupling with U1,t. The coupled SDE model is more flexible than233

the spline based model in that it is able to accommodate gradual shifts in amplitude and234

timing of the seasonal fishing pattern. This advantage comes at the cost of increased model235

complexity (as U1,t and U2,t are unobserved processes) and therefore potential difficulties236

in obtaining model convergence.237

An observation of commercial catch is reported as the cumulative catch Ct over a time238

interval ∆t. Given Bt and Ft the observed catch in log can therefore be written as an239

integral in continuous-time (Prager, 1994) plus noise240

log(Ct) = log

(∫ t+∆t

t
FsBsds

)
+ εt, (16)

where the catch observation errors εt ∼ N(0, σ2
C) are independent and σC is the standard241

deviation of the catch observation error. The formulation of Eqn. (16) allows the noise of242

the Ft process to be separated from the observation noise of Ct. The model furthermore243

handles catches sampled at any time and aggregated over any interval length ∆t, e.g. a244
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quarter of a year. For model fitting we assume to have NobsC observations of Ct together245

with the associated time intervals ∆t over which Ct were accumulated.246

In addition to catch observations we assume to have observations of Ni series of indices247

of exploitable biomass (It,i for i = 1, . . . , Ni) with series i containing NobsI,i observations.248

A biomass index could be commercial or scientific catch-per-unit-of-effort data or other249

biomass indicators e.g. as derived from acoustic surveys. Contrary to catch observations250

that are aggregated over a period of time, It,i are regarded as “snapshots” related to the251

time point t given as252

log(It,i) = log(qiBt) + et,i, (17)

where et,i ∼ N(0, σ2
I,i) are independent normal deviates and σI,i is the standard deviation253

of the ith index observation error, and qi is a catchability parameter for the ith index. In254

the common situation where only one series of biomass indices is available (Ni = 1) the i255

index will be omitted for notational simplicity.256

We also define the ratios between observation and process errors α = σI/σB and257

β = σC/σF . In cases where it is not possible to separate process and observation error258

a common simplification is to assume process error of Bt and observation error of It to259

be equal (Ono et al., 2012; Thorson et al., 2013), i.e. to fix α = 1. A similar relationship260

between the process error of Ft and the observation error of Ct could be envisioned, i.e.261

that β = 1, which we use when σC and σF cannot be estimated separately.262

Extreme observations or outliers in index and catch is a commonly encountered prob-263

lem in fisheries data (Chen et al., 1994). Such outliers are poorly modelled when using the264

normal distribution for observation errors, which may lead to bias of parameter estimates.265

Common approaches to mitigate the influence of outliers include objective outlier detection266

and subsequent residual rescaling (Prager, 2002), or robust estimation using fat-tailed er-267
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ror distributions (Chen et al., 2000). Here we take a simple approach to robust estimation268

where the observation error follow the mixture distribution pN(0, σ2)+(1−p)N(0, [wσ]2),269

where p and w are parameters controlling the fatness of the tails. The parameters p and270

w should in principle be estimated from data, however as we include robust estimation271

mainly for illustrative purposes we fix p = 0.95 and w = 15 for simplicity.272

In summary, SPiCT is a state-space model for surplus production containing unob-273

served processes for Bt and Ft and observed quantities Ct and It,i which include obser-274

vation noise. In addition to the usual parameters of deterministic production models,275

process- and observation variance parameters, σB, σF , σI,i, and σC , are estimated from276

data (if possible), while the unobserved processes Bt and Ft are treated as random effects.277

The spline based representation of seasonal fisheries requires φ as an additional parameter278

vector, while the coupled SDE system requires the parameters λ and σU as well as the279

unobserved processes U1,t and U2,t, which are also treated as random effects.280

2.2 Including prior information281

Auxiliary information can, if available, be incorporated in a Bayesian estimation framework282

using so-called informative priors, which are probability distributions that narrow the283

range of the model parameters they target. Including priors typically stabilises model284

fitting and reduces uncertainty of estimated quantities. However, the opposite is true285

if information contained in the data contradicts prior information. In a data-limited286

situation where some model parameters may be difficult to estimate, vaguely informative287

priors may be specified to aid model convergence and identifiability. This approach can be288

regarded as a compromise between fixing parameters and estimating them unconstrained289

(Magnusson & Hilborn, 2007). It is, of course, imperative that priors are only included if290

their specification relies on a solid foundation such as meta-analyses or independent data.291

Particular caution is required if informative priors are specified for n, r, m, or K, as these292
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are the main parameters determining management quantities.293

2.3 Estimates and intervals294

Both frequentist and Bayesian inference of model parameters are possible. In a frequent-295

ist framework, model parameters are estimated by maximising the log-likelihood function296

(Pawitan, 2013). In case of available a priori information, prior distributions are multi-297

plied with the likelihood function to obtain the posterior distribution. Bayesian maximum298

a posteriori parameter estimates are thus located at the maximum of the posterior distri-299

bution (Box & Tiao, 2011). While confidence intervals of the frequentist framework and300

credible intervals of the Bayesian framework have philosophical differences they are in this301

study both approximated using the curvature of the objective function at the optimum302

and are therefore both abbreviated CI.303

2.4 Model checking304

An important step in fitting stochastic models is the post-hoc evaluation of the quality of305

the model fit as expressed by the residuals. Generally, for a state-space model the so-called306

one-step-ahead (OSA) residual rtj at time tj is307

rtj =
Ytj − E(Ytj |Y tj−1)√

var(Ytj |Y tj−1)
, (18)

where E(Ytj |Y tj−1) is the OSA prediction of the observation Ytj given Y tj−1 = {Yt1 , . . . , Ytj−1},308

and var(Ytj |Y tj−1) is the variance of this prediction (Harvey, 1990). We calculate rtj for309

j ∈ {2, . . . , Nobs}, where Nobs = NobsC +
∑

iNobsI,i is the total number of available obser-310

vations. The vector Y tNobs , which comprises all catch and index observations, is ordered311

after the times the data points are observed. Thus, while indices are assumed to be ob-312

served as snapshots, catches are observed at the end of the interval they refer to (i.e. Ct313
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is observed at t + ∆t). Residual checks are performed separately for each data series of314

catches and indices to enable identification of the problematic model component.315

If the estimating model is equal to the data-generating model the OSA residuals (on-316

wards simply referred to as residuals) should be independent and standard normally dis-317

tributed. Model deficiencies can therefore be indicated by checking whether the residuals318

display these properties. Possible violation of the independence assumption can be checked319

by plotting the empirical autocorrelation function or by using the test of Ljung & Box320

(1978). Apparent autocorrelation in the residuals indicates that the model lacks the struc-321

ture to appropriately describe underlying dependencies in the data. As a consequence the322

obtained parameter estimates and associated CIs cannot be trusted. Additionally, resid-323

uals should also be tested for normality, e.g. using the test of Shapiro & Wilk (1965), and324

bias (mean different from zero) using a standard t-test.325

2.5 Implementation326

The model is implemented using Template Model Builder (TMB, Kristensen et al., 2015),327

which is a recently developed estimation framework for R (R Core Team, 2015). TMB328

is efficient in fitting models with many random effects and is therefore well-suited for es-329

timation of state-space models. The temporal dimension of the continuous-time model is330

resolved numerically using an Euler scheme (Iacus, 2009), which discretises time into in-331

tervals of fixed length dtEuler. The number of time intervals per year is therefore 1/dtEuler.332

To stabilise parameter estimation and calculation of the initial one-step-ahead residuals we333

impose a wide normal distribution on the initial states log(Bt/K) and log(Ft) with mean334

log(0.8), on log(n) with mean log(2), and on log(α) and log(β) with mean log(1). All335

distributions have a standard deviation of 10. These constraints on model parameters can336

also be interpreted as uninformative priors. Note, however, that these distributions are337

imposed purely for numerical reasons and should not have other impact than improving338
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numerical stability and avoiding extreme nonsensical estimates.339

R and TMB code for fitting the model is bundled in an R package included as part340

of the supplementary information. The package also includes routines for postprocessing,341

model checking and plotting.342

2.6 Examples343

2.6.1 South Atlantic albacore344

To facilitate a comparison with previously published surplus production models and es-345

timation approaches we fitted SPiCT to the South Atlantic albacore (Thunnus alalunga,346

scombridae) dataset of Polacheck et al. (1993). The dataset comprise NobsC = NobsI = 23347

years of catch and index pairs. The data contained too little information to allow uncon-348

strained estimation of parameters α, β and n. First, we therefore fixed α = 4 similar to349

the estimates found by Meyer & Millar (1999), β = 1, and n = 2 resulting in a quadratic350

production curve (SPiCT1). Second, as an alternative to fixing parameters (SPiCT2),351

we applied vague normally distributed priors to α, β, and n with mean parameters equal352

to the fixed values of the SPiCT1 case and standard deviations of 2 in the log domain353

(Table 1). In both SPiCT1 and SPiCT2 we set dtEuler = 1/16 year. Finally, we fitted354

ASPIC version 7.02 (Prager, 1994), which is a continuous-time observation error model, to355

contrast the discrete-time observation error and process error models of Polacheck et al.356

(1993) and the state-space model of Meyer & Millar (1999). Confidence intervals were357

obtained using the bootstrap module of ASPIC with 1000 samples.358

Similar to Polacheck et al. (1993) results are presented in terms of model parameters K,359

r, and q, B1990 (the predicted biomass in 1990), B1990/K (the biomass depletion relative360

to K in 1990), the estimated MSY , and the estimated optimal effort EMSY = FMSY /q.361

For SPiCT the stochastic reference points are reported, the residuals were checked for362

17



autocorrelation and tested for bias and normality, and a short-term forecast under a363

constant Ft scenario was included to illustrate the ability of the model to forecast catch364

including uncertainty. To facilitate comparison of the estimation methods we calculate365

estimated quantities relative to the estimates of the observation error model of Polacheck366

et al. (1993).367

2.6.2 Simulation study 1368

The purpose of simulation study 1 study was to quantify the estimation performance of369

SPiCT in terms of estimation stability (proportion of converged runs), estimation precision370

(expressed by the coefficient of variation, CV, of estimates), the coverage of 95% CIs371

(proportion containing the true value), and the median bias of estimates. These quantities372

were evaluated for eight variants of SPiCT (Table S2), ASPIC version 7.02 (Prager, 1994),373

with particular focus on the influence of fixing and misspecifying the parameters n, α,374

and β, which can be difficult to estimate. Subsequently, we also fitted the model of Meyer375

& Millar (1999) and compared with SPiCT using identical informative priors for the two376

models. See supplement S2 for detailed description.377

2.6.3 Simulation study 2378

The purpose of simulation study 2 was to assess the difference in estimation performance379

between a continuous-time model fitted to quarterly data containing within-year seasonal380

variation and a discrete time model (dtEuler = 1 year) fitted to annual data obtained by381

aggregating the quarterly data. In practice catch and biomass index data are often resolved382

by annual time steps, however for some stocks data with a higher temporal resolution383

are available. While quarterly data contain four times the number of observations of384

the corresponding aggregated annual data, they do not necessarily contain four times385

the information. This is because increasing the sampling frequency of a process typically386
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results in increased autocorrelation of data and is unlikely to substantially increase contrast387

compared to annual data.388

For simulation we used parameter values found by fitting SPiCT to the South Atlantic389

albacore dataset of Polacheck et al. (1993) while fixing α = 1, β = 1 and n = 2. Seasonal390

variation in Ft was included using a spline-based model with φ = (0.05, 0.1, 1.8) resulting391

in low values of Ft in quarters two and three, and high values of Ft in quarter four relative392

to quarter one. We simulated 30 years of biomass and fishing dynamics using a fine393

time step (dtEuler = 1/64 year) and collected quarterly (NobsC,Q = NobsI,Q = 120) and394

corresponding annual (NobsC,A = NobsI,A = 30) datasets of catches and biomass index.395

We fitted SPiCT using dtEuler = 1/32 year to the quarterly data with n = 2 and β = 1396

fixed to their true values while σB and σI were estimated separately. The continuous-time397

model estimated φ to fit the seasonal variation in Ft using the spline-based approach. We398

also fitted the model using dtEuler = 1 year (i.e. a discrete-time model) to the annual399

data with the same parametrisation (excluding φ). The procedure was repeated 1000400

times. To assess the difference in general utility of the models the proportion of converged401

estimations for each model was calculated. Estimation performance was then summarised402

for the datasets for which both models converged in terms of median CV and coverage of403

95% CIs of FMSY , BMSY , MSY , σB, and σI . As the CV scales with the inverse square404

root of the number of independent observations we also calculated J = (CVA/CVQ)2 for405

each of the five quantities, to express the increase in effective sample size. The squared406

ratio of the CVs (J) is proportional to the ratio of the effective sample sizes (i.e. the407

number of independent observations) of quarterly data to annual data and therefore an408

indicator of information gain.409
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2.6.4 North Sea stocks410

To illustrate the utility of SPiCT we analysed sub-annual data from five North Sea fish411

stocks in the period 1975-2006: Cod (Gadus morhua, gadidae) with NobsC = 124 and412

NobsI = 61, whiting (Merlangius merlangus, gadidae) with NobsC = 124 and NobsI =413

60, haddock (Melanogrammus aeglefinus, gadidae) with NobsC = 124 and NobsI = 60,414

herring (Clupea harengus, clupeidae) with NobsC = 124 and NobsI = 60, and Norway pout415

(Trisopterus esmarkii, gadidae) with NobsC = 119 and NobsI = 57.416

Quarterly information on total catch was obtained from ICES (2005). As quarterly417

catches have not been compiled in the more recent years, and some of the included stocks418

have minor data issues requiring in-depth scrutiny that are beyond the scope of this paper,419

our results for these stocks should be viewed solely as illustrative.420

The fish stocks of the North Sea are subject to substantial fishing pressure and are421

therefore surveyed extensively by scientific vessels. We gathered survey data for the time422

period 1975-2006 from the ICES DATRAS database (ICES, 2012) and calculated indices423

of exploitable stock biomass (ESB) by weighting age-structured survey catches with the424

ratio of age-specific commercial selectivity to survey selectivity. Specifically, the index is425

IESB =
∑

a Pca/PsaNsaWsa, where Pca and Psa are commercial and survey selectivities426

respectively, and Nsa and Wsa are numbers and mean weight at age a in the surveys re-427

spectively (time index omitted for simplicity). Thus, calculating IESB requires knowledge428

or assumptions about selectivities. Here we approximate the ratio Pca/Psa by the ratio429

Qca/Qsa, where Qca is the proportion of the commercial catches at age a and Qsa is the430

proportion of the survey catches at age a. For small sample sizes this is a crude approx-431

imation in which case simple assumptions regarding selectivities may be more robust. If432

available, sampling CVs of the index can be used to weight index observations, however433

this information was not part of the North Sea dataset.434
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Owing to variable survey frequency index time series contain annual, bi-annual and435

quarterly time steps between observations. With the continuous-time formulation of436

SPiCT it is possible to analyse the variably sampled data directly without the need to437

aggregate observations into fixed time steps.438

We assessed to which extent models of different complexity were identifiable given the439

data by first estimating a baseline model with a spline-based seasonal representation while440

fixing α = 1 and n = 2, which are standard assumptions (Ono et al., 2012; Thorson et al.,441

2013) and fixing β = 1. All remaining model parameters (K, m, q, σB = σI , σF = σC)442

were estimated. We then released the fixed parameters for estimation in the following443

order: α, β, n resulting in three models to be estimated in addition to the baseline. We444

set dtEuler = 1/32 year for all model fits.445

Residuals were analysed to diagnose model insufficiencies. If significant residual auto-446

correlation was detected in catches as an indication of potential shifts in the seasonal447

fishing pattern we ran the more flexible coupled SDE seasonal model and reexamined re-448

siduals. If residuals deviated from normality possibly as a result of outlying observations449

we reanalysed data using robust observation error distributions for either or both catch450

and index observations. Models were selected as the ones with best residual diagnostics451

(fewest violations in terms of autocorrelation, bias and non-normality). If models per-452

formed equally in terms of diagnostics we selected models with highest complexity (most453

free model parameters) to give examples of estimated values of α, β and n. Aspects of454

formal statistical model selection are outside the scope of this study.455

When fitting production models a constraint is often required to estimate absolute456

levels of biomass and fishing mortality (Bt and Ft respectively). This was the case for cod457

and whiting for which a bound was imposed on Bt in the year (y) the maximum catch458

was observed by applying a vague prior distribution based on information in the catch459

data. For stocks that have been subjected to sustained and relatively high commercial460
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exploitation for decades it seems fair to assume that current biomass is not many orders of461

magnitude larger than the observed catches. As prior distribution for log(By) we therefore462

used N(µBy , σ
2
By

), with µBy = log(kmaxCt) and σBy = 3. Note that a standard deviation463

of 3 in the log domain is a rather uninformative prior. The specific choice of k has minimal464

impact on the results as long as µBy is in the same order of magnitude as the maximum465

catch (1 ≤ k ≤ 9) and the prior is uninformative (σBy ≥ 3). In the current study we set466

k = 3.467

3 Results468

3.1 South Atlantic albacore469

Fitting SPiCT1 to the South Atlantic albacore dataset of Polacheck et al. (1993) produced470

results comparable to those obtained using alternative approaches (Fig. 1). The point471

estimates of SPiCT1 were particularly similar to those obtained using observation error472

estimators, however the point estimates of alternative approaches were contained in the473

95% CI of the SPiCT1 point estimates. SPiCT2 produced a wider CI of EMSY while CIs474

of K and B1990 were narrower compared to CIs of SPiCT1. CIs of remaining parameters475

were largely similar between SPiCT1 and SPiCT2. Overall, among all methods estimates476

of MSY were nearly identical and associated with the narrowest CIs.477

SPiCT1 produced 95% CIs of Bt and Ft that were wide relative to the 95% CIs of478

Bt/BMSY and Ft/FMSY (Fig. 2). The reduction in CIs of relative estimates was a result479

of high correlation between estimates of absolute levels and reference points. For SPiCT2480

this correlation was less marked and reference point estimates were uncertain resulting in481

inflated CIs of relative levels of biomass and fishing mortality making stock status less482

clear.483

In terms of parameter estimates SPiCT2 obtained a significantly lower value of β484
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than 1 (Table 1) resulting in reduced estimated catch observation error (Fig. 2). Overall,485

estimates of α, β and n were uncertain with standard deviations in log domain of 1486

(Table 1). Model checking of both SPiCT1 and SPiCT2 did not indicate any violation of487

assumptions regarding independence, bias and normality of residuals (Fig. S1, S2) for catch488

and index observations. Formal model selection would be a natural step to objectively489

choose between multiple models, however this topic is beyond the scope of the current490

study and is left to be explored in future work.491

Predictions of Bt, Bt/BMSY , Ft, Ft/FMSY and Ct can be obtained by propagating492

the model beyond the time span of the data (Fig. 2), however uncertainty increases for493

each predicted year as a result of the lack of data. Furthermore, as the model is a highly494

simplified version of reality, it should not be relied on for generating long-term predictions495

(> 2 years) even when residuals pass all tests.496

[Figure 1 about here.]497

[Figure 2 about here.]498

[Table 1 about here.]499

3.2 Simulation study 1500

Simultaneous estimation of α, β, and n (model A) was less stable than estimation of models501

with fixed n = 2, however, while parameter estimates provided by model A were uncertain,502

coverage of the resulting CIs was generally close to the expected 0.95. Simultaneous503

estimation of α, β, and n using vague priors (model H) improved both model convergence504

rate, median CV, and median bias, while CI coverage was unchanged relative to model A.505

Models with fixed n = 2 had lower CVs but also lower CI coverage for shorter datasets. CI506

coverage was generally reduced when misspecifying n, while misspecification of α and β507

influenced CI coverage less, in particular estimates of MSY and biomass relative to BMSY508
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were unaffected. Misspecified models were generally biased when estimating absolute509

quantities (FMSY , BMSY , Bt) and unbiased when estimating relative quantities (Ft/FMSY ,510

Bt/BMSY ) and MSY . Despite its simpler model structure, ASPIC showed comparable511

performance to SPiCT for these three quantities.512

Using informative priors SPiCT had a convergence rate close to one, while the model513

of Meyer & Millar (1999) had a convergence rate of 0.6 on average. Median CVs of both514

models decreased as the number of observations increased, however while CIs of SPiCT515

generally converged to the expected 95% the CIs of the Meyer & Millar (1999) model516

diverged for increasing number of observations. SPiCT estimates of absolute quantities517

were slightly biased (∼5%) while relative quantities and MSY were unbiased. The Meyer518

& Millar (1999) model generally produced biased estimates of absolute quantities while519

MSY and Blast/BMSY were largely unbiased.520

See supplement S2 for detailed description of results.521

3.3 Simulation study 2522

The convergence rate was 99.9% for both the discrete-time model fitted to the annual523

data and the continuous-time model fitted to quarterly data. The results of the runs for524

which both models converged (Table 2) did not show a significant difference in median525

CVs of estimated MSY , while the continuous-time model obtained significantly improved526

CVs for the remaining quantities. The improvement in CV of BMSY corresponded to a527

doubling of the effective sample size, while CVs of process and observation error standard528

deviations were reduced even further as a result of using quarterly data (Table 2). In529

terms of CI coverage significant differences between the discrete-time and continuous-time530

model were found for MSY and σI with the most substantial improvement in coverage531

found for MSY .532
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[Table 2 about here.]533

3.4 North Sea stocks534

Of the five selected model fits α and β were estimated for all stocks except herring, while535

n was estimated for Norway pout only (Table 3).536

The selected fit to Norway pout data detected a clear seasonal pattern in Ft (Fig. 3).537

Residual analysis of this fit showed no violations in terms of autocorrelation, bias or538

non-normality of residuals when using the coupled SDE seasonal model (Table 3). Fits to539

Norway pout data using the spline-based seasonal representation resulted in autocorrelated540

catch residuals, however the more flexible correlation pattern allowed by the coupled SDE541

seasonal model was able to eliminate this autocorrelation (Table S3). This illustrates542

how an observed pattern in residuals can aid in identifying a lacking model component.543

Similarly, the analysis of whiting resulted in no violations when using the spline-based544

seasonal model with robust observation error for index. This model was selected as a result545

of non-normality of index residuals (apparent outliers in index observations) detected in546

the baseline model (Table S3).547

The selected model for haddock used the coupled SDE seasonal representation (Table 3)548

as a remedy to detected autocorrelation in catch residuals when using a spline-based sea-549

sonal model (Fig. 4). Non-normality detected in index residuals could not be remedied550

by neither a robust observation error distribution nor a spline-based seasonal model551

(Table S3). In analysing the cod data significant non-normality was detected in catch552

residuals. Normality could be achieved using a robust catch observation error model,553

however at a cost of introducing autocorrelation in catch residuals, which could not be554

eliminated using the coupled SDE seasonal model. Finally, for herring a clear seasonal555

pattern in Ft was estimated (Fig. 3) resulting in seasonal fluctuations in Bt. Data covered556

contrasting periods of low and high levels of biomass resulting in reference point estimates557
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with higher precision relative to those of the other stocks (Fig. 3, right column). While558

a robust observation error distribution for the index eliminated non-normality of index559

residuals, non-normality of catch residuals and autocorrelation could not be eliminated560

within the current model suite indicating that unmodelled variability in the herring data561

remains.562

In identifying the process to observation noise relationships, two of four estimates of α563

were significantly different from the value one (Table 3), which is the commonly assumed564

value when estimation is not possible (Ono et al., 2012; Thorson et al., 2013). In contrast,565

only one of four estimates of β were significantly different from the value one. Similarly,566

the 95% CI of n for Norway pout did not exclude the commonly assumed value of two567

indicating a lack of evidence to deviate from a symmetric production function (Schaefer,568

1954).569

[Table 3 about here.]570

[Figure 3 about here.]571

[Figure 4 about here.]572

4 Discussion573

The stochastic surplus production model in continuous-time (SPiCT) presented here is a574

full state-space model in that both biomass and fishing dynamics are modelled as states,575

which are observed indirectly through biomass indices and commercial catches sampled576

with error. A wide range of previously published surplus production models are nested577

within SPiCT: Observation error and process error estimators (Polacheck et al., 1993)578

emerge if eliminating process or observation noise respectively. State-space models that579

assume catches are observed without error (Meyer & Millar, 1999; Punt, 2003; Ono et al.,580
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2012) are obtained by fixing the variance of the Ft-process to a large value and eliminating581

the observation noise on catches. Generally, discrete-time models (Meyer & Millar, 1999;582

Punt, 2003) are obtained by setting the temporal time step of the numerical solver (dtEuler)583

to 1 year, while continuous-time models (Schaefer, 1954; Pella & Tomlinson, 1969; Prager,584

1994) arise when reducing dtEuler to a value where parameter estimates do not change585

qualitatively if dtEuler is refined further.586

An advantage of the continuous-time formulation is the ability of the model to ac-587

commodate arbitrary and irregularly sampled data without a need for catch and index588

observations to match temporally. It is therefore straightforward to fit the model to data589

containing a mix of annual, biannual and quarterly data as demonstrated in our ana-590

lysis of North Sea stocks. The additional information contained in quarterly observations591

relative to the corresponding annually aggregated data can be exploited to improve cov-592

erage of confidence intervals and reduce uncertainty of parameter estimates (Table 2).593

Furthermore, the substantial sample size provided by quarterly observations from North594

Sea stocks enabled estimation of process noise, observation noise and for one stock the595

production shape parameter (n), which are notoriously difficult to estimate using annual596

observations (Prager, 2002; Ono et al., 2012).597

Explicit modelling of the fishery dynamics (Ft) as a latent process in continuous-time598

allows Ft to be estimated at arbitrary times without requiring temporal overlap with a599

catch observation. The Ft-process further allows catches to be predicted with uncertainty600

over any time interval by temporal integration of the product of the fishing and biomass601

processes. Catch predictions can then be compared with observed catches in an observation602

equation, which incorporates catch observation error (Eqn. 16). In this model formulation,603

the absence of the catch in the equation describing biomass dynamics avoids the risk of604

large catches leading to negative biomass estimates, which can be a problem when fitting605

discrete time models. The Ft and Ct components of the model are novel relative to previous606
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production models, and are first steps toward a framework that more realistically represent607

the uncertainty of fishing and catch observation processes.608

The current model formulation, where catches are given by the temporal integral of609

the product of fishing and biomass, implies that Bt represents the biomass of the exploit-610

able part of the stock and that BMSY is the level of exploitable stock biomass (ESB) that611

maximises production. It is therefore important when calculating the index of Bt from sci-612

entific survey data to only include the size-classes targeted by the fishery. It is furthermore613

important to distinguish ESB from other biomass representations when comparing Bt or614

BMSY to absolute estimates from alternative models. If the commercial selectivity curve615

matches the maturity curve of the stock then ESB can be interpreted as the spawning616

stock biomass (SSB), which is commonly reported from e.g. age-based models. Generally,617

the relative biomass, Bt/BMSY , is less sensitive to the choice of biomass representation618

making it a robust estimator of stock status.619

Currently, the main mechanism driving the fishing dynamics is seasonal variations620

in effort, which is modelled by imposing an annual correlation structure on the fishing621

mortality. The analyses of North Sea stocks showed that estimation of seasonal variation622

in fishing is possible if sub-annual catch observations are available (Figure 3). A potential623

extension of the fishing dynamics model could include economic components and allow624

estimation of bioeconomic quantities (Thorson et al., 2013), however at a cost of increased625

data requirements.626

In fisheries management it is useful to evaluate the implications of management de-627

cisions on stock status and future catches. Such evaluations can be made by predicting628

catches using Eqn. 16 under different fishing scenarios or by fixing future catches and629

predicting the corresponding levels of fishing mortality and biomass including associated630

prediction intervals. However, as the model is a highly simplified version of reality, it is631

not suited for generating long-term predictions (> 2 years).632
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While catch observations are aggregated over a time period, biomass index observations633

are assumed to be instantaneous snapshots. For survey based indices, where data are634

often gathered within weeks, this assumption seems reasonable. However, if the data635

collection period spans months or perhaps the whole year as for commercial CPUE data636

the assumption can be questioned. In such cases, an alternative to using biomass index637

data is to use commercial effort data directly in the model as an indicator of Ft. Such an638

extension could be readily implemented within the presented modelling framework.639

In statistical modelling it is customary to conduct model checking by inspecting re-640

siduals for violation of independence and distributional assumptions. Deviating residual641

patterns can be used to diagnose model insufficiencies. Non-normal or biased residuals642

indicate presence of an unmodelled trend in data, e.g. a temporal shift in catchability, or643

presence of extreme outlying observations. If outliers are detected one may apply methods644

for outlier removal (Prager, 2002) or alternatively, as illustrated in the analysis of North645

Sea stocks (Table 3), shift to a robust model formulation e.g. by assuming a heavy-tailed646

distribution for the data series where outliers occur. Seasonal autocorrelation in residuals647

may be accounted for by including a seasonal component in the fisheries model. Here we648

represented seasonal dynamics using either a cyclic spline (Eqn. 12) or the more flexible649

oscillatory system of coupled SDEs (Eqn. 15), which can adapt to shifts in timing and650

amplitude of the seasonal fishing pattern and reduce residual autocorrelation (Fig. 4).651

Persisting residual patterns may be caused by violations of assumptions related to652

observations, i.e. differences in biomass index and fisheries data in terms of spatial coverage653

or uncorrected mismatch between commercial selectivity and survey selectivity. Residual654

patterns can also be a result of significant changes in biomass and catchability due to655

migration, shifts in technology or fishing technique, trends in growth rate imposed by656

environmental changes etc. Extending the biomass dynamic model e.g. to a stage-based657

form could capture, more realistically, the selectivity of the fishery and the lagged dynamics658
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induced by interactions between juveniles and adults through recruitment and maturation.659

Inclusion of environmental covariates such as temperature, nutrient, or oxygen information660

may be used to induce longer-term trends in growth, which, if unmodelled, would result661

in biased estimates. Complete treatment of the course of action when model assumptions662

appear violated is outside the scope of this study. However, it is important to include663

results of residual analyses to enable an honest presentation of model results. If possible,664

it is furthermore preferable to compare results with those of alternative model classes665

(catch-only, age-structured, length-based etc.) in particular if residuals indicate a critical666

lack of fit.667

Formal checking of statistical models is key in obtaining valid parameter estimates,668

reliable confidence intervals, and useful quantities for model selection. In general, model669

checking has philosophical as well as practical aspects. Idealists would argue that a model670

producing residuals that violate assumptions lacks the model components required to671

completely describe data. However, as all models are simplifications of reality and there-672

fore wrong, they can never be expected to fully explain observations. Indeed, surplus673

production models represent a highly simplified reality where many poorly understood674

mechanisms such as species interactions and environmental effects are modelled as ran-675

dom variability. Thus adopting a pragmatic approach to model checking allowing mild676

departures from assumptions may be required.677

The flexibility of the presented model is obtained by explicit modelling of both the678

biomass process (Bt) and the fisheries process (Ft). Estimation of the potentially large679

number of resulting random effects is facilitated by TMB via the Laplace approximation680

(Kristensen et al., 2015). In calculating confidence or credible intervals TMB therefore re-681

lies on the assumption that the objective function is quadratic around the optimum, which682

in the frequentist framework is the asymptotic shape under certain regularity conditions683

(Wasserman, 2013). Thus, in a data-limited scenario asymptotic assumptions may not684
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hold resulting in decreased coverage of confidence intervals. In our simulation the Laplace685

approximation provided 95% confidence intervals ranging from 0.8-0.9 coverage when 15686

observations of catch and index were available to the expected 0.95 coverage at 120-240687

observations (Fig. S5). When analysing data containing a limited number of observations688

it is thus advisable to verify confidence interval coverage using bootstrap or likelihood689

profiles (de Valpine & Hilborn, 2005).690

Comparing a deterministic model (ASPIC, Prager, 1994) and a discrete-time model691

(Meyer & Millar, 1999) with a stochastic model in continuous-time (SPiCT) requires692

simplifying assumptions to become tractable. The presented comparison assumes that a693

realistic representation of population dynamics evolves continuously in time and involves694

some degree of random variability. Fitting SPiCT to data generated by such a system gen-695

erally produced unbiased parameter estimates (Fig. S6) with reliable confidence intervals696

(Fig. S5), while intervals produced by alternative methods were unreliable in particular697

for larger datasets (60-240 observations). In a data-limited situation (15-30 observations),698

all models produced biased estimates of FMSY and BMSY . In contrast, estimates of stock699

status (F/FMSY and B/BMSY ) and MSY performed well across models and are thus the700

quantities for which production models in general provide the most robust inference.701

There are several well-known complications associated with fitting surplus production702

models: First, as the input data are often collected annually it is common to have less703

than say 50 years of data available for estimation. Data scarcity can lead to problems with704

estimation instability and model identifiability. Second, reliable parameter estimation705

require sufficient contrast in data (Hilborn et al., 1992). Lack of contrast can result in706

identifiability problems and high correlation among model parameters thus making the707

estimation unstable. Third, estimating both process and observation noise is notoriously708

difficult (Polacheck et al., 1993; de Valpine & Hilborn, 2005) and may necessitate switching709

to either a process error or observation error model, or assume that the ratios of process710
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error to observation error (α and β) are known (Ono et al., 2012; Thorson et al., 2013).711

Fourth, the three mentioned points apply to the case where n = 2 (Schaefer, 1954).712

Thus, the increased nonlinearity of the generalized form (Pella & Tomlinson, 1969) likely713

exacerbates the mentioned estimation complications.714

We do not claim to have solved the above mentioned problems. However, to mitigate715

potential stability issues we have used the improved parameterisation of Fletcher (1978)716

and have used TMB for model estimation, which relies on analytical derivatives of the717

objective function to make estimation as stable as possible (Kristensen et al., 2015). Ex-718

tensive simulation testing was facilitated by the efficiency of TMB enabling computing719

times of parameter estimates in the order of seconds. These aspects are key to obtaining720

stable fits of nonlinear models (Bolker et al., 2013).721

Estimating the shape of the production curve (determined by n) is critical to manage-722

ment because the resulting reference points and associated stock status are sensitive to the723

value of n (Eqns. 6-8). Our simulation experiment showed stable performance and high724

coverage of confidence intervals when simultaneously estimating process noise, observation725

noise and n even for limited data (Fig. S5). Additionally, the model was able to estimate726

n in one of five North Sea stocks (Table 3). These results are based on unconstrained727

estimation of n. Our simulation results demonstrated that estimation can be stabilised728

by translating meta-analyses (e.g. Thorson et al., 2012) or knowledge of stock dynamics729

into a prior distribution for n (Fig. S3). Using a vague prior enabled n to be estimated730

for the South Atlantic albacore dataset of Polacheck et al. (1993) resulting in differences731

with potential implications for management relative to results using fixed n = 2 (Fig. 2).732

The improved stability of the presented modelling framework enables stock assessment733

scientists to explore the possibility of estimating n rather than relying on the common734

assumption that n = 2, which may result in biased reference point estimates and poor735

management decisions (Maunder, 2003).736
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Given an MSY-based approach to management, the modelling framework developed737

here focuses on honest reporting of model results through uncertainty quantification and738

model checking. By relaxing the common assumption that catches are known without739

error, a more realistic quantification of uncertainty on all reported quantities is obtained740

while residual diagnostics clarifies whether model assumptions are significantly violated.741

As a benefit of the continuous-time formulation quarterly resolved data may, if available,742

aid in reducing estimation uncertainty (Table 2) and allow seasonal predictions and man-743

agement. Using the presented model, we have also demonstrated that while estimates of744

Bt, Ft, BMSY and FMSY are often highly uncertain, the relative quantities Ft/FMSY and745

in particular Bt/BMSY may have considerably less uncertainty (Fig. S4) and bias (Fig. S6)746

and should therefore form the primary basis of management decisions.747
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Parameter SPiCT1, fixed SPiCT2, prior SPiCT2, posterior

α 4.0 4.0 (0.073, 218) 12.3 (1.300, 117)
β 1.0 1.0 (0.018, 54.6) 0.12 (0.018, 0.78)
n 2.0 2.0 (0.037, 109) 0.75 (0.073, 7.75)

Table 1: SPiCT estimates of α, β and n using the South Atlantic albacore dataset of
Polacheck et al. (1993) with 95% CIs in parentheses.
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FMSY BMSY MSY σB σI
Median CV Annual 0.516 0.852 0.469 0.605 0.216

Quarterly 0.500 0.605 0.480 0.289 0.095
MW, P -value 0.010 < 10−3 0.817 < 10−3 < 10−3

J 1.066 1.980 1.000 4.391 5.182
CI coverage Annual 0.866 0.882 0.735 0.966 0.930

Quarterly 0.866 0.875 0.870 0.949 0.960
Prop., P -value 1.000 0.681 < 10−3 0.076 0.004

Table 2: Results of simulation 2 summarised by median CVs with P -values of Mann-
Whitney (MW) rank sum tests of identical CVs, implied information gain (J) as given by
the squared CV ratio, and coverage of 95% CIs of estimates with P -values of equal-
proportions test. Results are based on the continuous-time model using 30 years of
quarterly observations (NobsC = NobsI = 120) and the discrete-time model using the
corresponding aggregated annual observations (NobsC = NobsI = 30).
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Stock Seasonal Robust α β n Residual
model error analysis

Herring Spline It – – – AC, NN
Norway Pout Coupled SDE – 0.59 (0.22, 1.58) 0.84 (0.44, 1.59) 1.27 (0.52, 3.07) –
Haddock Coupled SDE – 1.53 (0.85, 2.77) 0.66 (0.42, 1.05) – NN
Cod Spline – 2.36 (1.31, 4.24) 0.27 (0.14, 0.52) – NN
Whiting Spline It 2.45 (1.03, 5.87) 1.32 (0.75, 2.3) – –

Table 3: Results of the selected fits of SPiCT to the five North Sea stocks with 95% CIs
given in parentheses. Residual analyses showed no significant violation of assumptions
for Norway pout and whiting, while autocorrelation (AC) was detected for herring, and
non-normality (NN) was detected for herring, haddock and cod.
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List of Figures851

1 Comparison of estimated quantities obtained from fits to the South Atlantic852

albacore dataset relative to estimates obtained using an observation error853

model (Polacheck et al., 1993). Error bars are 95% CIs. Note that ASPIC854

does not report uncertainty on all quantities. Overall, estimates were similar855

with MSY and the relative estimate B1990/K having lowest uncertainty.856

Note that estimating α, β, and n (SPiCT2) lead to decreased uncertainty857

of K and B1990, while the uncertainty of EMSY increased substantially.858

2 Fits to the South Atlantic albacore dataset of Polacheck et al. (1993) with859

α, β, and n fixed (SPiCT1) and α, β, and n estimated (SPiCT2). Solid blue860

lines are estimated values, vertical grey lines indicate the time of the last861

observation beyond which dotted lines indicate forecasts, dashed lines are862

95% CI bounds for absolute estimated values, shaded blue regions are 95%863

CIs for relative estimates (Bt/BMSY or Ft/FMSY ), grey regions are 95%864

CIs for estimated absolute reference points (horizontal lines), solid circles865

are observations with index plotted as It/q. Notably, SPiCT1 estimated866

narrower CIs of reference points and relative levels while SPiCT2 estimated867

narrower CIs of absolute levels of Bt, Ft and catch.868

3 Estimated biomass and annually averaged fishing mortality (solid blue lines)869

of North Sea stocks relative to estimated reference points with 95% CI (blue870

shaded region). Fishing mortality including within-year variation (shaded871

blue lines in middle column) show the estimated seasonal pattern, which is872

particularly marked for herring. Uncertainty of estimated reference points873

is represented by 95% confidence regions on the relative scale (grey shaded874

region in right column).875

4 Significant lags are detected in the autocorrelation function (ACF) of North876

Sea haddock catch residuals using a spline-based seasonal model (a). This877

violation is remedied when using the coupled SDE seasonal model (b). The878

detected autocorrelation is caused by the constant amplitude of the spline-879

based model, which is insufficient compared to the adaptive representation880

of the coupled SDE seasonal model (c).881
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