Objects of various FLCore classes can be converted into other classes,
both basic R ones, like data.frame
, and defined in the package. For the
specifics of the precise calculations carried out for each pair of classes,
see Details.
character
.An object of the requested class.
The six dimensions of an `FLArray` are converted into seven columns, named `quant` (or any other name given to the first dimension in the object), `year`, `unit`, `season`, `area`, `iter` and `data`. The last one contains the actual numbers stored in the array. `units` are stored as an attribute to the `data.frame`. The `year` and `data` columns are of type `numeric`, while all others are `factor`.
The two or more dimensions of an *FLPar* objects are converted into three or more columns. For a 2D objects, they are named *params*, *iter* and *data*. The last one contains the actual numbers stored in the array, in a column type `numeric`, while all others are `factor`.
A *data.frame* with the right column names is converted into an *FLQuant* object with missing values being added. Missing columns are assumed to contain the default dimnames in *FLQuant*.
- *n* = *stock.n* - *wt* = *stock.wt* - *m* = *m* - *mat* = *mat()* - *m.spwm*, *harvest.spwn* = *spwn*
base::as, base::coerce
#> quant year unit season area iter data #> 1 1 1 unique all unique 1 1.53491576 #> 2 2 1 unique all unique 1 -0.41619872 #> 3 3 1 unique all unique 1 -0.52054380 #> 4 4 1 unique all unique 1 0.85058387 #> 5 5 1 unique all unique 1 0.33449657 #> 6 1 2 unique all unique 1 -0.82935177 #> 7 2 2 unique all unique 1 -0.21869594 #> 8 3 2 unique all unique 1 -1.54508372 #> 9 4 2 unique all unique 1 0.23322978 #> 10 5 2 unique all unique 1 0.03106964 #> 11 1 3 unique all unique 1 0.35786565 #> 12 2 3 unique all unique 1 1.60862422 #> 13 3 3 unique all unique 1 1.42985426 #> 14 4 3 unique all unique 1 -0.94833964 #> 15 5 3 unique all unique 1 1.01570554 #> 16 1 4 unique all unique 1 0.03773461 #> 17 2 4 unique all unique 1 -1.74423940 #> 18 3 4 unique all unique 1 -0.97007381 #> 19 4 4 unique all unique 1 -0.22902736 #> 20 5 4 unique all unique 1 -0.97484568 #> 21 1 5 unique all unique 1 2.69237242 #> 22 2 5 unique all unique 1 1.39239386 #> 23 3 5 unique all unique 1 1.36007615 #> 24 4 5 unique all unique 1 -0.36541588 #> 25 5 5 unique all unique 1 -0.86893720 #> 26 1 6 unique all unique 1 -0.50655673 #> 27 2 6 unique all unique 1 1.21470730 #> 28 3 6 unique all unique 1 0.50695868 #> 29 4 6 unique all unique 1 -2.09497131 #> 30 5 6 unique all unique 1 0.03407924 #> 31 1 7 unique all unique 1 0.85272870 #> 32 2 7 unique all unique 1 0.74322814 #> 33 3 7 unique all unique 1 0.55715361 #> 34 4 7 unique all unique 1 -1.24858322 #> 35 5 7 unique all unique 1 -0.20787431 #> 36 1 8 unique all unique 1 0.42396946 #> 37 2 8 unique all unique 1 -0.50669744 #> 38 3 8 unique all unique 1 -0.61152331 #> 39 4 8 unique all unique 1 2.41165945 #> 40 5 8 unique all unique 1 -0.16495814 #> 41 1 9 unique all unique 1 -0.44040605 #> 42 2 9 unique all unique 1 0.52197617 #> 43 3 9 unique all unique 1 -1.91832225 #> 44 4 9 unique all unique 1 -1.98264996 #> 45 5 9 unique all unique 1 0.52120016 #> 46 1 10 unique all unique 1 0.77778320 #> 47 2 10 unique all unique 1 -0.81211887 #> 48 3 10 unique all unique 1 0.91074832 #> 49 4 10 unique all unique 1 0.94875395 #> 50 5 10 unique all unique 1 -1.34804945 #> 51 1 11 unique all unique 1 0.35417586 #> 52 2 11 unique all unique 1 0.53026393 #> 53 3 11 unique all unique 1 -0.31097493 #> 54 4 11 unique all unique 1 -0.24415553 #> 55 5 11 unique all unique 1 -0.29187819 #> 56 1 12 unique all unique 1 -1.12808616 #> 57 2 12 unique all unique 1 -1.12288159 #> 58 3 12 unique all unique 1 2.05393864 #> 59 4 12 unique all unique 1 -0.90951843 #> 60 5 12 unique all unique 1 0.45837916 #> 61 1 13 unique all unique 1 -0.04661845 #> 62 2 13 unique all unique 1 -0.68095460 #> 63 3 13 unique all unique 1 -1.48882940 #> 64 4 13 unique all unique 1 -0.39251301 #> 65 5 13 unique all unique 1 -1.74968202 #> 66 1 14 unique all unique 1 -0.03866763 #> 67 2 14 unique all unique 1 -0.79715324 #> 68 3 14 unique all unique 1 -0.91592054 #> 69 4 14 unique all unique 1 0.07326746 #> 70 5 14 unique all unique 1 1.23817132 #> 71 1 15 unique all unique 1 0.71837134 #> 72 2 15 unique all unique 1 0.53946650 #> 73 3 15 unique all unique 1 -1.06123399 #> 74 4 15 unique all unique 1 -0.54073787 #> 75 5 15 unique all unique 1 -0.71520471 #> 76 1 16 unique all unique 1 -0.17892009 #> 77 2 16 unique all unique 1 0.16497028 #> 78 3 16 unique all unique 1 -0.72740817 #> 79 4 16 unique all unique 1 -0.53783713 #> 80 5 16 unique all unique 1 -0.59966490 #> 81 1 17 unique all unique 1 1.18208775 #> 82 2 17 unique all unique 1 0.18921288 #> 83 3 17 unique all unique 1 0.24894911 #> 84 4 17 unique all unique 1 1.04664341 #> 85 5 17 unique all unique 1 -1.28930094 #> 86 1 18 unique all unique 1 0.37511557 #> 87 2 18 unique all unique 1 -0.55691839 #> 88 3 18 unique all unique 1 0.30242663 #> 89 4 18 unique all unique 1 0.22226647 #> 90 5 18 unique all unique 1 -0.96216696 #> 91 1 19 unique all unique 1 0.05203237 #> 92 2 19 unique all unique 1 0.90004038 #> 93 3 19 unique all unique 1 -0.39490088 #> 94 4 19 unique all unique 1 0.95414600 #> 95 5 19 unique all unique 1 -0.58821435 #> 96 1 20 unique all unique 1 -1.47658453 #> 97 2 20 unique all unique 1 -1.37777577 #> 98 3 20 unique all unique 1 -1.34567231 #> 99 4 20 unique all unique 1 -0.73663796 #> 100 5 20 unique all unique 1 -0.47011150#> params iter data #> 1 phi 1 1.3806093 #> 2 rho 1 0.9735572 #> 3 phi 2 1.6750109 #> 4 rho 2 1.3628533 #> 5 phi 3 1.1769066 #> 6 rho 3 1.2838512 #> 7 phi 4 -0.1488983 #> 8 rho 4 0.2575707 #> 9 phi 5 -0.1778234 #> 10 rho 5 1.8209890 #> 11 phi 6 0.8031219 #> 12 rho 6 1.0086853 #> 13 phi 7 -0.4157953 #> 14 rho 7 1.0949587 #> 15 phi 8 1.2124896 #> 16 rho 8 0.5183745 #> 17 phi 9 1.2403600 #> 18 rho 9 0.6176815 #> 19 phi 10 0.6856759 #> 20 rho 10 1.0179165# from data.frame to FLQuant as(data.frame(age=rep(1:4, each=3), year=2011:2013, data=rnorm(12)), "FLQuant")#> An object of class "FLQuant" #> , , unit = unique, season = all, area = unique #> #> year #> age 2011 2012 2013 #> 1 -0.859536 1.357705 1.215061 #> 2 1.453913 -0.085912 -0.617569 #> 3 -0.218260 -1.326005 -2.362209 #> 4 -1.409970 0.254397 0.295870 #> #> units: NA