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Abstract

FLBEIA (FL Bio-Economic Impact Assessment) is an R package build on top of FLR libraries. The
purpose of the package is to provide a flexible and generic simulation model, also called FLBEIA, to
conduct Bio-Economic Impact Assessments of harvest control rule based on management strategies under
a Management Strategy Evaluation (MSE) framework. The model is divided into two main blocks,
the operating model (OM) and the management procedure model (MPM). The OM is formed by the
biological, the fleet and the covariates components and the MPM by the observation, the assessment and
the management advice components.The model is multistock, multifleet and seasonal, and uncertainty is
introduced by means of montecarlo simulation. The algorithm has been coded in a modular way to ease
its checking and to make it flexible. The package provides functions that describe the dynamics of the
different model components and the user chooses which of the functions are used in each specific case
study. Furthermore, for some of the components, if the functions provided within FLBEIA do not fulfill the
requirements of a specific case study, the user can code the functions that describe better the dynamics
of those components. Therefore, due to the wide choice of functionality and flexibility that provides the
model, we can define it as a framework more than as a model. Main limitations of the model are that the
stocks must be age structured or aggregated in biomass (length structure is not allowed), and that spatial
dimension is not considered explicitly. However, spatial characteristics could be modeled assigning stocks
and/or fleets/metiers to specific areas.
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1 Introduction

The idea of FLBEIA comes from the similarities between the different models developed to perform bio-
economic analysis in AZTI-Tecnalia. These models were pieces of code re-written in order to match with
the specific case study or fishery. These pieces, in many cases, reflected exactly the same processes with
similar dynamics that had to be slightly adapted to the different case studies. Therefore, in order to
ease the job of the modelers, we decided to develop not a model but a framework in which a model is
built. This model can be constructed combining already existing functions or developing new functions
and combining them with existing ones. The choice of the kind of model to be used in a specific case
study depends on the questions asked, which implies that not any model can be considered valid for all
purposes.

Big advances have been done the last years in the field of bio-economic modelling with the development
of models such as, Fishrent [Salz et al., 2011], Fcube [Ulrich et al., 2011], FcubeEcon [Hoff et al., 2010]
among others, and with the development of also some theoretical and partial assessments. However,
until now there is no an universal model that can be applied to address all fishery management issues.
Thus, we developed FLBEIA with the objective to integrate many of the models available in a common
bio-economic impact assessment framework as a package of FLR [Kell et al., 2007] in [R Development
Core Team, 2010]. FLR [Kell et al., 2007] was built with the goal of developing a common framework to
facilitate collaboration within and across disciplines (e.g. biological, ecological, statistical, mathematical,
economic, and social) and, in particular, to ensure that new modelling methods and software are more
easily validated and evaluated, and more widely available once developed.

The package FLBEIA contains the model called FLBEIA, a collection of functions and new S4 classes
developed to facilitate the simulation of fishery systems in response to different types of management
strategies. The model allows the evaluation of different management strategies, in a wide variety of case
studies and scenarios, under Management Strategy Evaluation framework [Butterworth and Punt, 1999,
Butterworth, 2007, De la Mare, 1998, Punt and Donovan, 2007, Rademeyer et al., 2007], and identifies
the potential economic and biological consequences of a proposed policy action.

The main characteristics of FLBEIA package are:

� It is coded in a generic, flexible and extensible way.

� Provides functions to condition the simulations, to run them and to analyze the results.

In fact, a mayor effort has been set on the second functionality, namely the simulation model.
The main characteristics of the FLBEIA simulation model are:

� The model is fully biological-economic coupled and provides fully integrated bio-economic assess-
ment.

� The model deals with multi-species, multi-fleet and multi-metier situations.

� The model can be run using seasonal steps (smaller or equal to one year).

� It is generic, flexible and extensible.

� Uncertainty can be introduced in almost any of the parameters used.

A conceptual diagram of the model is shown in Figure 1. The simulation is divided in two main blocks:
the Operating Model (OM) and the Management Procedure Model (MPM). The OM is the part of the
model that simulates the real dynamics of the fishery system and the MPM is the part of the model that
simulates the whole management process.

The OM has three components that can interact among themselves:

1. The biological populations or stocks.

2. The fleets.

3. The covariates. They can be of any nature; environmental, economical or technical.

The MPM has also three components:

1. The data collected from the OM.

2. The observed population obtained through the application of a set of assessment models to the
observed data.

3. The management advice obtained from the application of harvest control rules (HCR) to the ob-
served populations.

The model is built modularly with a top-down structure that has, at least, four levels:
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Figure 1: Conceptual representation of the main components modelled in FLBEIA. Source: [Garcia et al.,
2013]

1. In the first level (top level), there is only one function, FLBEIA function. It calls the functions on
the second level in a determined order and it links the main components (stocks, fleets, covariates,
data, observed population and management advice) of the OM and MPM.

2. The functions in the second level correspond with the generation of each of the components in
the Figure 1. The OM components project the objects one season forward: biols.om projects the
stocks, fleets.om projects the fleets and covars.om projects the covariates. The MPM components
generate the objects necessary to produce the management advice, they generate the objects based
on OM objects and they operate at most once a year: observation.mp generates the data, assess-
ment.mp generates the observed population and advice.mp generates the management advice. They
take the input objects and return only those related to the component they belong to.

3. The functions in the third level define the specific dynamics of each component and they are chosen
by the user in each simulation. They are always called by a second level function and in some cases,
a third level function also calls fourth level functions. For example a function that describes the
dynamics of an age structured population can call a stock recruitment function. In this way, a func-
tion used to describe age structured populations can be combined with different stock recruitment
relationships.

4. The functions in the fourth level are called by functions in the third level and are used to model
the most basic processes in the simulation. They are coded as a function and selected by the user
because it could be interesting to use the same third level function together with different fourth
level functions, as in the case of age structured population and stock recruitment functions.

This top down structure allows avoiding the classical structure of separated biological and economic
(and social) modules (that could be integrated or not). Therefore, when the model is designed and the
modeler takes the decision of including a particular characteristic, it does not make any difference if the
characteristic is biological or economical, only matters at which level the characteristic is.

FLBEIA framework permits to incorporate new third and lower level functions or to modify them, while
first and second level ones are fixed. Changing first or second level functions would imply a different
approach, but the existing third and lower level functions would be useful.

In the next Sections FLBEIA’s conceptual model and its specifications are explained. Firstly, in Sec-
tion 2, the conceptual model characterizes the main components as well as the feedbacks and loops among
them. Secondly, in Section 3, it is explained how to run FLBEIA to perform MSE. Thirdly, in Section 4,
the model specification describes the components, the currently available functions by level, and how to
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use them within the FLBEIA package. Next, in Section 5, a way to easily condition the model is presented.
And finally, in Section 6, the FLBEIA function output is described.

2 The concept of FLBEIA

The simulation model is divided in two main blocks, the Operating Model (OM) and the Management
Procedure Model (MPM). This division is part of the requirements of the MSE approach, that is, the
model includes a mathematical representations of the real world (OM), the observed world (MPM) and
the interactions between them.

2.1 Operating model

The OM is the part of the model that simulates the real dynamics of the fishery system. It is divided
in three components or operating models, the biological, the fleets and the covariates operating model.
It runs in seasonal time steps, and it projects the components in each time step. Firstly, it updates the
biological component, secondly the fleet component and finally the covariates component.

Biological component

The biological component simulates the population dynamics of the stocks. The number of populations
is, in principle, unlimited. The limitation could come from memory problems with R and/or the operating
system. The stocks can be described as age structured populations or as biomass dynamics populations,
since length structured populations models are not supported by the simulation algorithm. Each stock
can follow a different population dynamics model and is projected independently. It does not mean that
they cannot be interdependent between them but the order in which these biological components are
updated has to be decided and it will affect the results obtained.

Fleet component

The fleet component simulates the behaviour and dynamics of the individual fleets. As the number
of the stocks, the number of fleets is in principle unlimited. The limitation could come from memory
problems with R and/or the operating system used. The activity of the fleets is divided into metiers. The
metiers are formed by trips that have the same catchability for all the stocks. Fleet fishing effort and
effort share among metiers are independently updated for each fleet in each season. Fleet catchability
and/or capacity is updated annually, independently for each fleet, through capital dynamics according to
its own economic performance.

Covariates component

This part of the model incorporates all the variables that are not part of the biological or fleet
components and that affect any of the operating model components or the management process. The
number of covariates is, in principle, unlimited. The limitation could come from memory problems with
R and/or the operating system used.

Links among and within components

The links within the OM components are not restricted by the general settings of the simulation
model. Therefore, it is the user who decides which are the links that should be included in the model.
The possible links that can be included are:

� The link within the biological component, where catch affects abundance.

� The link within the fleets component, where fleet capacity affects fishing effort.

� The link between the biological and fleets components, where fishing effort and fish abundance
affects catches.

2.2 Management procedure model

The Management Procedure Model (MPM) is divided into 3 components: the observation, the assess-
ment and the management advice. The observation component produces the required data to run the
assessment. Then, the assessment component is applied to those data to obtain the observed popula-
tions. Finally, the management advice component produces a management advice based on the observed
populations. MPM procedure is applied yearly in the appropriate season of the year. Not necessarily in
the last season, for example, it can be simulated as in the case of anchovy in the Bay of Biscay, where
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management is applied from the mid-season of one year to the mid-season of the next year. Simulations
with multi-annual advice is also possible.

Observation component

The observation component generates the required objects to run the assessments. Three types of
objects can be generated:

� Stocks.

� Fleets.

� Abundance indices.

Stocks and abundance indices objects are generated independently, stock by stock, whereas fleets are
observed jointly. These objects are generated based on the variation that is introduced in the components
of the OM. This variation can be due to:

� Introducing uncertainty to the OM variables, or

� adjusting the OM variables to the assessment model requirements which is going to be used in the
next step (e.g. collapsing the dimensions -age, season,...), or

� adjusting the OM variables to the legal conditionings (TACs, quotas, TAE, discards,...).

Assessment component

Assessment models are applied on a stock by stock basis and they can vary from stock to stock.

Management advice component

The management advice component produces a set of indicators (determined by the user) useful for
policy making. The management advice is produced based on the output obtained from the observation
and assessment components. The advice is first applied at single stock level and after that it can be
applied at fleet level.

3 Running FLBEIA

3.1 Input objects

FLBEIA requires some input arguments to run a simulation. There are two types of arguments: the main
arguments, which give information on the stocks, the fleets and the covariates, and the control argu-
ments, which control the behaviour of the main and the second level functions (see Section 4.2). The
main arguments contain biological information on the stocks (biols, SRs and BDs), information on the
fleets (fleets), additional variables (covars) and information on management (indices, advice). Re-
garding the control arguments, there is a control object related to the main function FLBEIA (main.ctrl),
whereas the others relate to the main arguments (biols.ctrl, fleets.ctrl, covars.ctrl, obs.ctrl,
assess.ctrl, advice.ctrl). For detailed information on the input objects required see Section 4.1.

In order to easy the creation of the objects with the appropriate object format some additional
functions has been implemented to create the inputs (see Section 5.1). Additionally, several examples has
been coded for guidance (see Section 5.2).

3.2 Main function: FLBEIA

To perform biological and economic simulations it is necessary to invoke the main function, FLBEIA, which
calls to different subfunctions to perform the simulations depending on the control elements set.
FLBEIA function is called as follows:

FLBEIA(biols, SRs, BDs, fleets, covars, indices, advice, main.ctrl, biols.ctrl,

fleets.ctrl, covars.ctrl, obs.ctrl, assess.ctrl, advice.ctrl)

For more details on the FLBEIA function see Section 4.1.
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3.3 Output object

The output of FLBEIA function is a list containing information on the expected evolution of the fish
stocks (biols), the fleets (fleets), the covariates (covars), the provided advice (advice), the assessed
stocks and observed indices (stocks and indices), the control elements for the fleets (fleets.ctrl) and
the versions of the different packages used to run the simulations (pkgs.versions). All the elements
except stocks and pkgs.versions correspond with the updated versions of the objects used in the call
to FLBEIA.
It has the following structure:

list(biols=’FLBiols’, fleets=’FLFleetsExt’, covars=’FLQuants’,

advice=’list(TAC,TAE,quota.share)’, stocks=’FLStocks’, indices=’FLIndices’,

fleets.ctrl=’list’, pkg.versions=’matrix’)

Description of the outputs:

biols: FLBiols object containing historical and future ”real” evolution of the stock.

fleets: FLFleetsExt object containing historical and future ”real” evolution of the fleets regarding effort
exerted, distribution among metiers, catches, prices and so on.

covars: Named list containing historical and future evolution of the different covariates.

advice: List containing information on management advice (e.g. TAC,TAE,quota.share).

stocks: Named list with one element per stock of class FLStock or NULL, if a FLStock is not needed to
run the assessment. Contains the perceived stocks used in the management procedure to produce
the management advice. For details on FLStock object see Figure B.6.

indices: Named list with one element per stock of class FLIndices or NULL, if a FLIndices is not needed
to run the assessment.

fleets.ctrl: Control object used for the fleets.om function.

pkgs.versions: Matrix indicating the packages and package version used along the simulation.

4 FLBEIA functions

4.1 First level function: FLBEIA

FLBEIA function is a multistock, multifleet and seasonal simulation algorithm coded in a generic, flexible
and extensible way. It is generic because it can be applied to any case study that fit into the model
restrictions. The algorithm is made up by third and fourth level functions specified by the user. In
addition of the existing functions new ones can be defined and used if necessary. This is why we define
the model as flexible and extensible.

To determine the simulation, the third- and fourth-level functions must be specified in the main
function FLBEIA. For this purpose it has a control argument associated to each second level function.
These control arguments are lists which include the name of the functions to be used in the simulations
and any extra argument required by those functions that is not already contained in the main arguments.
FLBEIA function is called as follows:

FLBEIA(biols, SRs, BDs, fleets, covars, indices, advice, main.ctrl, biols.ctrl,

fleets.ctrl, covars.ctrl, obs.ctrl, assess.ctrl, advice.ctrl)

Main arguments:

biols: An FLBiols object (list of FLBiol objects). The object must be named and the names must be
the same as in the SRs object, the BDs object and the catches slots within FLFleetExts object. For
details on FLBiol object see Figure B.1.

SRs: A list of FLSRsim objects. This object is a simulation version of the original FLSR object. The object
must be named and the names must be the same as in the FLBiols object. For details on FLSRsim

object see Figure B.3.

BDs: A list of FLBDsim objects. This object is similar to FLSRs object but oriented to simulate population
growth in biomass dynamics populations. The object must be named and the names must coincide
with those used in FLBiols object. For details about FLBDsim object see Figure B.4.

8



fleets: An FLFleetsExt object (list of FLFleetExt objects). FLFleetExt object is almost equal to the
original FLFleet object but the FLCatch object in catch slot has been replaced by FLCatchExt

object. The difference between FLCatch and FLCatchExt objects is that FLCatchExt has two extra
slots alpha and beta used to store Cobb-Douglas production function parameters, α and β, [Cobb
and Douglas, 1928, Clark, 1990]. α corresponds with the exponent of effort and β to the exponent
of biomass. The FLFleetsExt object must be named and these names must be consistently used in
the rest of the arguments. For details about FLFleetExt object see Figure B.2.

covars: An FLQuants object. This object is not used in the most basic configuration of the algorithm.
Its content depends on the third or lower level functions that make use of it.

indices: A list of FLIndex objects. Each element in the list corresponds with one stock. The list must
be named and the names must be the same as in the FLBiols object. For details about FLIndex

object see Figure B.5.

advice: A list. The class and content of its elements depends on two functions, the function in fleet.om

defined to simulate fleets’ effort and the function used to produce advice in advice.mp.

Control arguments:

main.ctrl: Controls the behaviour of the main function, FLBEIA. For details on main.ctrl object see
Table C.1.

biols.ctrl: Controls the behaviour of the second level function biols.om. For details on biols.ctrl

object see Table C.2.

fleets.ctrl: Controls the behaviour of the second level function fleets.om. For details on fleets.ctrl

object see Table C.3.

covars.ctrl: Controls the behaviour of the second level function covars.om. For details on covars.ctrl

object see Table C.4.

obs.ctrl: Controls the behaviour of the second level function observation.mp. For details on obs.ctrl

object see Table C.5.

assess.ctrl: Controls the behaviour of the second level function assessment.mp. For details on as-

sess.ctrl object see Table C.6.

advice.ctrl: Controls the behaviour of the second level function advice.mp. For details on advice.ctrl

object see Table C.7.

4.2 Second level functions

4.2.1 Biological component: biols.om

The call to the function within FLBEIA is done as:

biols.om(biols, fleets, SRs, BDs, covars, biols.ctrl, year, season)

This function projects the stocks one season forward. The projection is done independently stock by
stock by the third level function specified for each stock in biols.ctrl object. Currently, there are three
population dynamics functions implemented, one corresponding to age structured populations, ASPG, the
second one to biomass dynamics populations, BDPG and another one to fixed populations (given as input),
fixedPopulation. These functions do not include predation among stocks, but this kind of models could
be implemented and used in the algorithm if necessary.
Control arguments:

biols.control: This argument is a list which contains the necessary information to run the third level
functions that are called by biols.om. The elements depend on the third and lower level functions
used to describe the dynamics of the stocks. The list must contain at least one element per stock
and the name of the element must coincide exactly with the name used in biols argument so it can
be used to link the population with its dynamics model. At the same time, each of these elements
must be a list with at least one element, growth.model, which specifies the name of the function
used to describe population dynamics (options: ASPG, BDPG or fixedPopulation).

For example:

> biols.ctrl

$NHKE

$NHKE$growth.model

[1] "ASPG"
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$CMON

$CMON$growth.model

[1] "BDPG"

$FAKE

$FAKE$growth.model

[1] "ASPG"

4.2.2 Fleets component: fleets.om

The call to fleets.om function within FLBEIA is done as:

fleets.om(fleets, biols, covars, advice, fleets.ctrl, advice.ctrl, year, season)

This function projects the fleets one season forward. The main argument, fleets, is an object of class
FLFleetsExt (for more detail see Section 4.1)

The function is divided in three processes related to fleet dynamics: the effort model, the price model
and the capital model. Effort and capital models are fleet specific, whereas price model is fleet and stock
specific. First, fleets.om calls the effort model and it updates the slots related to effort and catch. The
effort models are called independently fleet by fleet. Then, fleets.om calls the price model in fleet by
fleet and stock by stock basis, which updates the price slot in the fleets object. Finally, but only in
the last season of the year, the function calls the capital model. Thus, investment and disinvestment is
only done annually. The capital model is called independently fleet by fleet.

Effort model: This part of the model simulates the tactical behaviour of the fleet every season and iter-
ation. In each time step and iteration, the effort exerted by each individual fleet and its effort-share
among metiers is calculated depending on the stock abundance, management restrictions or others.
After that, the catch produced by the combination of effort and effort-share is calculated and dis-

cards, discards.n, landings, landings.n slots are filled. Other stored variables in fleets.ctrl

could also be updated here, for example quota.share, as a result of the exerted effort.

The effort model is specified at fleet level, so each fleet can follow a different effort model. At the
moment there are 4 functions available: fixedEffort, SMFB, SSFB and MaxProfit. To write new
functions for effort, it must be taken into account that the input arguments must be found among
fleets.om function arguments and that the output must be a list with updated FLFleetsExt and
fleets.ctrl objects, i.e.:

list(fleets = my_fleets_obj, fleets.ctrl = my_fleets.ctrl_obj)

Price Model: The price model updates the price-at-age at stock, metier and fleet level in each time
step and iteration.

At the moment, there are 2 functions available: fixedPrice and elasticPrice. To write new
functions for price it must be taken into account that the input arguments must be found among
fleets.om function arguments and that the output must be a list with an updated FLFleetsExt

object.

Capital Model: This module is intended to simulate the strategic behaviour of the fleets, namely, the
investment and disinvestment dynamics. The model is applied at fleet level and in an annual basis
and can affect fleets’ capacity and catchability. Catchability could be modified through investment
in technological improvement and capacity as a result of an increase (investment) or decrease (dis-
investment) in the number of vessels. Changes in fleets’ capacities could produce a variation in
quota share among fleets, for example. Thus, the corresponding change would have to be done in
fleets.ctrl object.

At the moment, there are 2 functions available: fixedCapital and SCD. To write new functions for
capital dynamics, as for effort and price, it must be taken into account that the input arguments must
be found among fleets.om function arguments and that the output must be a list with updated
FLFleetsExt and fleets.ctrl objects.

Control arguments:

fleets.ctrl: The most simple example of fleet dynamics model and hence the most simple fleets.ctrl

object correspond with the model where all the parameters in fleets object are given as input and
maintained fixed within the simulation. This is obtained using the third level functions, fixedEf-
fort, fixedPrice and fixedCapital which do not need any extra arguments. In the case of two
fleets, FL1 and FL2, where FL1 catches 3 stocks, ST1, ST2 and ST3 and FL2 catches ST1 and ST3

stocks, the fleets.ctrl could be created using the following code:
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>fleets.ctrl <- list()

# The fleets

>fleets.ctrl[['FL1']] <- list()

>fleets.ctrl[['FL2']] <- list()

# Effort model per fleet.

>fleets.ctrl[['FL1']]$effort.model <- 'fixedEffort'

>fleets.ctrl[['FL2']]$effort.model <- 'fixedEffort'

# Price model per fleet and stock.

>fleets.ctrl[['FL1']][['ST1']]$price.model <- 'fixedPrice'

>fleets.ctrl[['FL1']][['ST2']]$price.model <- 'fixedPrice'

>fleets.ctrl[['FL1']][['ST3']]$price.model <- 'fixedPrice'

>fleets.ctrl[['FL2']][['ST1']]$price.model <- 'fixedPrice'

>fleets.ctrl[['FL2']][['ST3']]$price.model <- 'fixedPrice'

# Capital model by fleet.

>fleets.ctrl[['FL1']]$capital.model <- 'fixedCapital'

>fleets.ctrl[['FL2']]$capital.model <- 'fixedCapital'

> fleets.ctrl

$FL1

$FL1$effort.model

[1] "fixedEffort"

$FL1$ST1

$FL1$ST1$price.model

[1] "fixedPrice"

$FL1$ST2

$FL1$ST2$price.model

[1] "fixedPrice"

$FL1$ST3

$FL1$ST3$price.model

[1] "fixedPrice"

$FL1$capital.model

[1] "fixedCapital"

$FL2

$FL2$effort.model

[1] "fixedEffort"

$FL2$ST1

$FL2$ST1$price.model

[1] "fixedPrice"

$FL2$ST3

$FL2$ST3$price.model

[1] "fixedPrice"

$FL2$capital.model

[1] "fixedCapital

4.2.3 Covariates component: covars.om

covars.om projects covars object one season forward. covars object is a named list and the class and
dimension of each element will depend on the function used to project it into the simulation.

11



The call to covars.om function within FLBEIA is done as:

covars.om(biols, fleets, covars, advice, covars.ctrl, year, season)

Internally, for each element in the covars list, it calls to the third level functions specified in the
covars.ctrl object. At the moment, there exist 2 third level functions: fixedCovar, which is used to
work with variables that are input parameters not updated within the simulation and ssb.get, which is
used to get the real Spawning Stock Biomass of one of the simulated stocks.

The economic variables used in the capital dynamics model SCD should be stored in covars object
and updated in each step using values in fleets object.
Control arguments:

covars.ctrl: This argument is a named list with one element per covariate and the names of the list
must match those used to name the covars object. Each of the elements is, at the same time, a
list with, at least, one element, dyn.model, which defines the dynamics of the covariate in question
(options: fixedCovar, ssb.get).

This way of working could be useful, for example, for environmental variables such as sea surface
temperature that could affect catchability or recruitment in the fleet and biological operating models
respectively and that are external to fishery system.

A covariate with a non-trivial dynamics could be the abundance of certain animal which is not com-
mercially exploited by the fleet, but which abundance affects the natural mortality of any of the exploited
stocks. In this case, 2 extra functions will be needed, the function that defines the dynamics of the
covariate and the function that models the natural mortality of the stock as a function of the abundance
of the animal. The first function should be declared in covars.ctrl argument and the former one in
biols.ctrl argument as a stock dynamics model.

4.2.4 Observation component: observation.mp

The observation component generates the necessary data to run the assessment models. The main function
is observation.mp and it calls third level functions which generate 3 possible objects, a FLStock, a
FLIndices or a FLFleetsExt object. The FLStock and FLIndices objects are generated independently
for each stock and the FLFleetsExt object jointly for all the fleets.
The call to observation.mp function within FLBEIA is done, stock by stock, as follows:

observation.mp(biols, fleets, covars, indices, advice, obs.ctrl, year, season, stknm)

where stknm is the name of the stock to be observed and its name matches with those used in the biols

object.
The output of observation.mp is a list with 3 elements. The first element, stock is an object of

class FLStock or NULL, if a FLStock is not needed to run the assessment. The second element, indices,
is a named list with one element per stock and its names correspond with those used in biols object.
The elements of the indices list are of class FLIndices or NULL, if a FLIndices is not needed to run the
assessment. The third element, fleets.obs, is an observed version of the original fleets object. At the
moment, there is no third level function implemented to generate observed fleets.

As the management process is currently run in a yearly basis, the unit and season dimensions are
collapsed in all the observed objects. Moreover, if the management process is being conducted at the end
of year y the observed objects extend up to year y-1, whereas they extend up to year y in the cases when
management process is conducted in any other season as it happens in reality.
Control arguments:

obs.ctrl: The obs.ctrl object must be a named list where the names used correspond with those used
in the FLBiols object. Each stock element is, at the same time, a list with two elements (stkObs
and indObs) and these two elements are once again lists. A scheme of obs.ctrl object is presented
in Table C.5.

The stkObs element is a list with the arguments necessary to run the third level function used to
generate the FLStock object. In the list there must be at least one element, stkObs.model, with
the name of the third level function that will be used two generate the FLStock object. If it is not
required to generate a FLStock object, then NoObsStock value should be assigned to stkObs.model

argument and this function will return the NULL object.

The indObs element is a list with one element per index in the FLIndices object. Each element
of the list is, at the same time, a list with the arguments necessary to run the third level function
used to generate the FLIndex object. In the list there must be at least one element, indObs.model,
with the name of the third level function that will be used two generate the FLIndex object. If it is
not required to generate a FLIndices object, then indObs element will be set equal to NoObsIndex
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instead of a list and this will return the NULL object instead of a FLIndices for the corresponding
stock.

4.2.5 Assessment component: assessment.mp

The assessment component applies an existing assessment model to the stock data objects generated by
the observation model (FLStock and FLIndices). The assessment models are applied stock by stock,
independently.
The call to assessment.mp function within FLBEIA is done as follows:

assessment.mp(stocks, fleets.obs, indices, assess.ctrl, datayr, stknm)

where stknm is the name of the stock to be assessed and its name corresponds with one of those used in
the biols object.

The output of the function is a list of FLStocks with harvest, stock.n and stock slots updated.
Within FLBEIA no new assessment models are provided, but the models already available in FLR can be
used.
Control arguments:

assess.ctrl: This argument is a named list with one element per stock, where the names must coincide
with those used in the biols object. The elements must have at least one element, assess.model,
which defines the name of the assessment model to be used for each stock. Furthermore, if the
assessment model to be used is non-trivial (i.e. different to NoAssessment), the list must contain a
second argument control with the adequate control object to run the assessment model.

4.2.6 Management advice component: advice.mp

The management advice component generates an advice based on the output of assessment and/or ob-
servation components.
The call to advice.mp function within FLBEIA is done, stock by stock, as follows:

advice.mp(stocks, fleets.obs, indices, covars, advice, advice.ctrl, year, season, stknm)

where stknm is the name of the stock to be assessed and its name correspond with one of those used in
the biols object.

The output of the function is an updated advice object.
Depending on the structure of the third level functions used to generate advice and to simulate fleet

dynamics, the advice could be an input advice (effort, temporal closures, spatial closures -implicitly
through changes in catchability-...) or an output advice (catch).

advice: The structure of advice object is open and it is completely dependent on the third level functions
used to describe fleet dynamics and to generate the advice. For example, if SMFB and annualTAC

are used to describe fleet dynamics and generate the advice respectively, then advice is a list with
two elements, TAC and quota.share. TAC is an annual FLQuant with the quant dimension used to
store stock specific TACs and, quota.share is a named list with one element per stock being the
elements FLQuant-s with quant dimension used to store fleet specific annual quota share.

Control arguments:

advice.ctrl: This argument is a named list with one element per stock and one more element for each
fleet. The names must coincide with those used to name biols object and the name of the extra
argument must be fleets. The elements of the list are, at the same time, lists with at least one
element, HCR.model, with the name of the model used to generate the single stock and fleet advice
depending on the case.

4.3 Third level functions

4.3.1 Population growth functions

The following population growth functions are currently defined:

fixedPopulation: Fixed population function

In this function all the parameters are given as input, because there is not any population dynamics
simulated. For the stocks for which we select its dynamics as fixed population, natural mortality (i.e.
biols[[stock.name]]@m) has to be set equal to 0 and additionally, if the population is aggregated in
biomass, biomass growth (i.e. BDs[[stock.name]]@gB) has also to be set equal to 0.
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ASPG: Age Structured Population Growth function

The function ASPG describes the evolution of an age structured population using an exponential survival
equation for existing age classes and a stock-recruitment relationship to generate the recruitment. The
recruitment can occur in one or more seasons. However, the age is measured in integer years and the
seasonal cohorts are tracked separately. The seasonal cohorts and their corresponding parameters are
stored in the ’unit (u)’ dimension of the FLQuant-s. And all the individuals move from one age group
to the following one in the 1st of January. Thus, being φ the recruitment function, RI the reproductive
index, N the number of individuals, M the natural mortality, C the catch, a0 the age at recruitment, s0
the season when the recruitment was spawn, and a, y, u, s the subscripts for age, year, unit and season
respectively, the population dynamics can be written mathematically as:

If s = 1,

Na,y,u,1 =


φ (RIy=y−a0,s=s−s0) , a = a0

(Nia · e−
Mia

2 − Cia) · e−
Mia

2 , a0 < a < A

(NiA−1 · e
−

MiA−1
2 − CiA−1) · e−

MiA−1
2 +

(NiA · e
−

MiA
2 − CiA) · e−

MiA
2 , a = A

(1)

where ia = (a− 1, y − 1, u, ns), iA−1 = (A− 1, y − 1, u, ns) and iA = (A, y − 1, u, ns).
If s > 1,

Na,y,u,s =

{
φ (RIy=y−a0,s=s−s0) , a = a0

(Nia · e−
Mia

2 − Cia) · e−
Mia

2 , a0 < a ≤ A
(2)

where ia = (a, y, u, s− 1).
And the reproductive index RI is given by:

RIy−a0,s =
∑
a

∑
u

(N · wt ·mat · fec · exp− (M ·Mspwn + F · Fspwn))a,y−a0,u,s (3)

where wt is the mean weight, mat is the percentage of mature individuals, fec is the fecundity parameter,
Mspwn and Fspwn are the proportion of natural and fishing mortality, respectively, occurring before
spawning.

The stock-recruitment relationship φ is specified in the model slot of corresponding FLSRsim object.
FLSRsim object enables modeling a great variety of stock-recruitment relationships depending on its
functional form and seasonal dynamics. Details on available stock-recruitment relationships are given in
Section 4.4.1.

BDPG: Biomass Dynamics Population Growth function

The function BDPG describes the evolution of a biomass dynamics population, i.e. a population with
no age, stage or length structure. The population is aggregated in biomass, B, and the growth of the
population, g is a function of the current biomass and the catch C. The model is mathematically described
in Equation 4:

Bs,y =

{
Bs−1,y + g(Bs−1,y)− Cs−1,y , s 6= 1
Bns,y−1 + g(Bns,y−1)− Cns,y−1 , s = 1

(4)

where s and y are the subscripts for age and year, respectively, and ns is the number of seasons. As
FLBEIA is seasonal, the equation also depends on the season. The growth model g and its parameters are
specified, respectively, in the model and params slot of corresponding FLBDsim class. Currently only Pella
and Tomlinson model [Pella and Tomlinson, 1969] is implemented to model growth, but new models can
be defined if needed.

The following parameterization of the growth model has been implemented:

g(B) = B · r
p
·
[
1−

(
B

K

)p]
(5)

where r is the intrinsic rate of population increase, K the carrying capacity and p the assymetry parameter.
Additionally, there has been added a restriction in order to avoid negative values. This arises when
population is at high biomass values (well above carrying capacity) and outside the range of observed
biomass levels in the past. Moreover, it doesn’t occur for larger catches that result in lower biomass
levels. Intuitively, this seemed to be contradictory because the population collapsed in the absence of
catches case and remained stable for higher catch levels. Therefore, in the absence of catches, we restrict
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the biomass to be α times the carrying capacity (Bt ≤ α ·K). In other words, Bt = min(Bt, α ·K). But
note that:

α ≥ 1

α ≤
(p
r

+ 1
) 1

p

Note that when we introduce stochasticity in the parameters of the Pella-Tomlinson model (e.g. from a
Bayesian model or from a bootstrapping) we have a range of values for the surplus production model.
So that α must be smaller than the minimum value across iterations: α ≤ mini((pi/ri + 1)1/pi). The
value of α has to be introduced by the user in the BDs[[stock.name]]@alpha. Above restrictions will be
checked in FLBEIA and it will print an error if they are not fullfilled. Finally, note that these restrictions
arise from the no catch case. So, even after restricting the biomass, there might be cases when some levels
of catches lead to negative biomasses.

When working with populations structured in biomass, the biomass values has to be stored in the *.n

slots, whereas *.wt slots has to be set to 1.

4.3.2 Effort models

The following effort model functions are currently defined:

fixedEffort: Fixed effort model

In this function all the parameters are given as input except discards and landings (total and at age).
The only task of this function is to update the discards and landings (total and at age) according to the
catch production function specified in fleets.ctrl argument.

Two arguments need to be declared as elements of fleets.ctrl if this function is used, effort.model
= ’fixedEffort’ and catch.model. The last argument is used to specify the catch production func-
tion that will be used to generate the catch. Note that first argument must be declared at fleet
level (i.e fleets.ctrl[[fleet.name]]$effort.model), second argument at fleet and stock level (i.e.
fleets.ctrl[[fleet.name]][[stock.name]]$catch.model) and that catch production model corresponds
with a fourth level function. For more details see Section 4.4.2.

SMFB: Simple Mixed Fisheries Behaviour model

This model is a simplified version of the behavior of fleets that work in a mixed fisheries framework.
The function is seasonal and assumes that effort share among metiers is given as input parameter.

In each season, the effort of each fleet, f , is restricted by the seasonal landing quotas or catch quotas
of the stocks that are caught by the fleet. Additionaly, the option of Landing Obligation (LO) is included.
The following steps are followed in the calculation of effort:

1. Compare the overall seasonal quotas,
∑
f Qf,s,st · TAC, with the abundances of the stocks. If the

ratio between overall quota and abundance exceeds the seasonal catch threshold, γs,st, reduce the
quota share in the same degree. Mathematically:

Q′f,s,st =

Qf,s,st , if
∑

f Qf,s,st·TAC
Bs,st

≤ γs,st
Qf,s,st · Bs,st·γs,st∑

f Qf,s,st·TAC
, otherwise

(6)

2. According to the catch production function, calculate the efforts corresponding to the landing or
catch quotas, Q′f,s,st · TAC, of the individual stocks, {Ef,s,st1 , . . . , Ef,s,stn}.

3. Based on the efforts calculated in the previous step, calculate an unique effort, Ef,s. To calculate
this effort the following options can be used:

max: The maximum among possible efforts, Êf,s = maxj=1,...,n Ef,s,stj

min: The minimum among possible efforts, Êf,s = minj=1,...,n Ef,s,stj

mean: The mean of possible efforts, Êf,s = meanj=1,...,nEf,s,stj
previous: The effort selected is the effort most similar to previous year effort on that season,

Êf,s =

{
Ef,s,st :

∣∣∣∣1− Ef,s,st
Ef,y−1,s

∣∣∣∣ = min
j=1,...,n

∣∣∣∣1− Ef,s,stj
Ef,y−1,s

∣∣∣∣}
stock.name: The effort corresponding to stock.name is selected: Êf,s = Ef,s,stock.name

If there is LO, instead of using the option chosen by the user, the option to calculate the unique
effort will be the minimum among possible efforts.
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4. When LO is applied, calculate the new effort using the exemptions and flexibilities (de Minimis,
year tranfer and quota swap).

� de Minimis: The fleet is allowed to discard a percentage of the quota to increase the effort in
order to catch other stocks.

� year transfer : The fleet can borrow next year’s quota to catch it in the current year.

� quota swap: A percentage of the quota of one stock can be transfered to the effort limiting
stock if two stocks are in the same group. These groups are specifiyed by the user.

5. Compare the effort, Êf,s, with the capacity of the fleet, κf (capacity must be measured in the same
units as effort and it must be stored in the capacity slot of the FLFLeetsExt object). If the capacity
is bigger, then the final effort is unchanged and if the capacity is smaller, the effort is set equal to
the capacity, i.e.:

Ef,s =

{
κf , if κ < Êf,s

Êf,s , if κ ≥ Êf,s
(7)

6. The catch corresponding to the effort selected is calculated for each stock and compared with the
corresponding quota. If the catch is not equal to the quota and the season is not the last one, the
seasonal quota shares of the rest of the seasons are reduced or increased proportionally to their
weight in the total share. The shares are changed in such a way that the resultant annual quota
share is equal to the original one. In case the difference between actual catch and that corresponding
to the quota exceeds the quota left over in the rest of the seasons, the quota in the rest of the seasons
is canceled. Mathematically for season i where s ≤ i ≤ ns′:

Q′′f,i,st = max

(
0, Q′f,i,st + (Q′f,s,st −Q′′f,s,st) ·

Q′f,i,st∑
j>sQ

′
f,j,st

)
(8)

where Q′ denotes the quota share obtained in the first step and Q′′ the new quota share.

The fleets.ctrl argument in SMFB function

SMFB function requires several control arguments at global and fleet level that are described below.

Global arguments:

catch.threshold: This element is used to store γs,st parameter described in the first step of SMFB function
algorithm. The element must be a FLQuant object with dimension [stock = nstk, year = ny,

unit = 1, season = ns, area = 1, iter = ni], where the names in the first dimension must
match with those used to name FLBiols object. Thus, the thresholds may vary between stocks,
seasons, years and iterations. The elements of the object are proportions between 0 and 1 that
indicate the maximum percentage of the stock that can be caught in each season. The reason to
use this argument is that it is reasonable to think that it is impossible to fish all the fish in the sea.
Thus, although the TAC is very large the actual catch will be restricted to γs,st ·Bs,st.

seasonal.share: A named FLQuants object, one per stock, with the proportion of the fleets’ TAC share
that ’belongs’ to each season, so the sum along seasons for each fleet, year and iteration should be
equal to 1. The elements must be FLQuant objects with dimension [fleet = nf, year = ny, unit

= 1, season = ns, area = 1, iter = ni], where the names in the first dimension must match
with those used to name FLFleetsExt object. The names of the FLQuants must match stock names
used in the FLBiols object.

Fleet level arguments (i.e. fleets.ctrl[[fleet.name]]):

effort.model: ’SMFB’.

effort.restr: alternative values are ’max’, ’min’, ’mean’, ’previous’ or ’stock.name’ (the name of
one of the stocks caught by the fleet).

max: The fleet will continue fishing until the catch quotas of all the stocks are exhausted.

min: The fleet will stop fishing when the catch quota of any of the stocks is exhausted.

previous: Among the efforts obtained under each stock restriction the effort most similar to the
previous year effort will be selected.

stock: The fleet will continue fishing until the catch quota of ’stock’ is exhausted. (This could
correspond, for example, with a situation where the catch of one stock is highly controlled.)
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These options are explained mathematically above when the SMFB function is described step by step.
There are two alternatives: one option for all years or one option for each year (vector with the
length ny).

restriction: Alternative values are ’catch’ or ’landings’. Assigned value depends on wether the
efforts are calculated according to catch or landings restriction. There are two alternatives: one
option for all years or one option for each year (vector with the length ny).

LandObl: Logical or vector with a logic value for each year. If it is TRUE for that year, LO rule is applied.
The fleet has to stop fishing when they reach the first quota of the stocks. Therefore, the unique
effort will be the minimum among possible efforts.

LandObl_minimis: Vector with a logic value for each year. If it is TRUE for that year, de Minimis exemp-
tion is used.

LandObl_yearTransfer: Vector with a logic value for each year. If it is TRUE for that year, year Transfer
flexibility is used.

LandObl_minimis_p: Matrix with values between 0 and 1, the maximum percentage of quota that the
fleet could increase for each stock in each year.

LandObl_yearTransfer_p: Matrix with values between 0 and 1, the maximum percentage of quota of
each stock that the fleet could borrow from next year’s quota.

LandObl_discount_yrTranfer: Matrix with values between 0 and 1. The discount to be applied if in the
previous year was used that amount. This object is used to store the percentage used from the next
year’s quota.

LO_stk_grp: named vector with length equal to the number of stocks, same number for the same group
of stocks to swap the quotas.

Fleet/stock level arguments (i.e. fleets.ctrl[[fleet.name]][[stock.name]]):

catch.model: The name of the fourth level function which gives the catch production given effort and
biomass (aggregated or at age). The function must be coherent with SMFB and the function used to
simulate the population growth. At the moment, two functions are available CobbDouglasAge and
CobbDouglasBio. For more details see Section 4.4.2.

SSFB: Simple Sequential Fisheries Behaviour model

Simple sequential fisheries behaviour is related to those fleets whose fishing profile changes with the
season of the year. SSFB function models the behaviour of fleets that work in a sequential fisheries
framework. It is assumded that, in each season, the fleet, f , has only one target species or stock, st, thus
the metier, m, is defined on the basis of the season and target species, resulting only in one target species
per each metier.

In each season, s, the effort allocated to each species, st, or metier, m, follows the historical trend (in
order to capture the seasonality of each species fishing season), but it is restricted to the remaining catch
quota of the fleet.

Therefore, production function is applied at metier level, but the production has some restrictions, in
both catches, C, and effort, E, that are described through the following steps:

1. Calculate the total quota that corresponds to each fleet, CQ, from the historical data and estimate
remaining quota for the fleet, RQs,f,st, deducting the catches from previous seasons.

RQs,f,st = CQf,st −
∑
ss<s

Css,f,st = TAC ·QSf,st −
∑
ss<s

Css,f,st

Where QS is the quota share and C the catches.

2. Compare the total remaining quotas with the abundances of the stocks. If the ratio between remain-
ing quotas and abundance exceeds the seasonal catch thershold, γs,st, then reduce the remaining
quota the same amount.

RQ′s,f,st =

{
RQs,f,st , if

∑
f Qs,f,st

Bs,st
≤ γs,st;

RQs,f,st · Bst,s·γs,st∑
f RQs,f,st

, otherwise.
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3. Initially expected effort, Ês,f , is shared between different metiers (i.e. species) month by month on
the basis of historical seasonal effort pattern.

Ês,m,st = Ês,f · Es,m = κf · PEDs,f · Es,m

Where Es,m is the effort share by metier, PEDs,f is the percentage of effective days and κf is the
fleet’s capacity.

4. Expected catches ,Ĉs,m,st, corresponding to that initial effort, are calculated through the Cobb-
Douglas catch production function at metier and stock level, seasonally.

5. If the expected catches resulting from the previous step are higher than the remaining quota corre-
sponding to each metier (Step 2), there is extra effort which has to be reallocated among the other
species.

If Ĉs,f,st > RQs,f,st ⇒ Ĉs,f,st = RQs,f,st ⇒ Es,m,st < Ês,m,st;

else Ĉs,f,st ≤ RQs,f,st ⇒ Ĉs,f,st = Cs,f,st ⇒ Es,m,st = Ês,m,st.

6. The reallocation of remaining effort, Ês,m,st − Es,m,st, can be performed in different ways:

� Proportionally to the price and availability of the species in a given season, or

� proportionally to the effort allocated to the remaining metiers.

7. This is repeated stock by stock until no effort remains to be allocated or all the TACs are exhausted

The advice argument in SSFB function

SSFB function requires arguments in the advice object as described below.

Global arguments:

quota.share: A named FLQuants object, one per stock, with the total proportion of TAC that ’belongs’
to each fleet each year and dimension [fleet = nf, year = ny, unit = 1, season = 1, area =

1, iter = ni]. The ’fleet’ dimension names must match fleets’ names. And the FLQuants must
match stock names. For each year and iteration the sum of the proportions must be equal to 1.

The fleets.ctrl argument in SMFB function

SSFB function requires several control arguments at global and fleet level that are described below.

Global arguments:

catch.threshold: A FLQuant object with dimension [stock = nst, year = ny, unit = 1, season =

ns, area = 1, iter = ni], which contains the proportion of biomass that total catch of stock
cannot exceed, i.e. the previously mentioned γs,st parameter.

Fleet level arguments (i.e. fleets.ctrl[[fleet.name]]):

effort.model: ’SSFB’

restriction: ’catch’. Related to quota threshold.

effectiveDay.perc: A FLQuant object with dimension [quant = 1, year = ny, unit = 1, season =

ns, area = 1, iter = ni], which contains the proportion of days expected to be effective in a
season (i.e. in which the fleet will go out fishing), the previously mentioned PED parameter (see
Step 3).

effort.realloc: Alternative values are NULL or ’curr.eff’. Element used to describe how does the
remaining effort have to be reallocated between the rest of the metiers targeting stocks for which
there is already remaining quota.

NULL: The same proportion is assigned for all metiers.

curr.eff: Effort is reallocated proportionally to the expected effort share.

Fleet/stock level arguments (i.e. fleets.ctrl[[fleet.name]][[stock.name]]):

TAC.OS.model: Function to model the TAC overshoot. Currently the only available function is TAC.OS.triangCond,
which simulates a triangular distribution funcion for TAC overshoot, in the range (min, max) and
a peak in the mode.
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TAC.OS.triangCond.params: A named numeric vector of dimension 3. Corresponding to the parameters
required by TAC.OS.triangCond function, min, max and mode.

discard.TAC.OS: Logical. If TRUE, the TAC overshoot is discarded, in other case the TAC overshoot is
incorporated to landings.

MaxProfit: Maximization of profit under a TAC constraint model

This second model used to simulate mixed fisheries dynamics calculates the total effort and the effort
allocation among metiers that maximises the profit of the fleet. The total effort is constrained by the
capacity of the fleet (capacity unit has to be converted in the same unit as effort) and by the catch quota
of some of the stocks. Mathematically:

max
Ef ,γf,1,...,γf,nMT,f

∑
m

∑
st

∑
a

Lst,a,f,m · Pst,a,f,m − Ef · γf,m · V aCf,m − FxCf · nVf (9)

with the constraints: 
0 ≤ γf,m ≤ 1 and

∑
m γf,m = 1

Ef ≤ κf ,
Cst,f ≤ QSst,f for st ∈ ∆f .

(10)

where P is the price of the fish landed, V aC the variable cost of fishing effort, which depends on the
metier and is given as cost per unit of effort, FxC the fixed costs of each fishing unit, which is given
at fleet level and in terms of cost per vessel, nV is the number of vessels in the fleet, κ is the capacity,
defined as the maximum effort that the fleet can execute in each season, QS is fleet’s TAC share and ∆
is the set of stocks for which the constraint must be fulfilled. In biomass dynamic populations, landings
and prices are given at stock level.

The fleets.ctrl argument in MaxProfit function

MaxProfit function requires several control arguments at fleet level that are described below.

Fleet level arguments (i.e. fleets.ctrl[[fleet.name]]):

stk.cnst: A vector with the name of the stocks that constraints the capacity of the fleet (i.e. maximum
effort that fleet can execute in each season) given the catch quota of these stocks.

Fleet/stock level arguments (i.e. fleets.ctrl[[fleet.name]][[stock.name]]):

TAC.OS.model: Function to model the TAC overshoot. Currently the only available function is TAC.OS.triangCond,
which simulates a triangular distribution funcion for TAC overshoot, in the range (min, max) and
a peak in the mode.

TAC.OS.triangCond.params: A named numeric vector of dimension 3. Corresponding to the parameters
required by TAC.OS.triangCond function, min, max and mode.

discard.TAC.OS: Logical. If TRUE, the TAC overshoot is discarded, in other case the TAC overshoot is
incorporated to landings.

MaxProfitSeq: Maximization of profit under a TAC constraint model for a sequential
fishery

+++++ MARGA/AGURTZANE: describir las diferencias con respecto a MaxProfit
MaxProfitSeq is similar to the function MaxProfit, but with an additional constraint on the effort.

As the effort of each metier is limited by a minimum and maximum effort value. That is:

Eminf,m ≤ Ef · γf,m ≤ Emaxf,m (11)

where E is the effort, γ the effort share by metier and Emax and Emin are the maximum and minimum
efforts, respectively.

The fleets.ctrl argument in MaxProfitSeq function

Additionally to the control elements required by textttMaxProfitSeq function, textttMaxProfitSeq
function requires the following arguments at fleet level:

Fleet level arguments (i.e. fleets.ctrl[[fleet.name]]):
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effort.range: A matrix of dimension [nmt,2], where rows contain the (minimum and maximum) effort
values for each metier and colnames(effort.range) = c(’min’,’max’).

4.3.3 Price models

The following price model functions are currently available:

fixedPrice: Fixed price model

The prices are given as input data and are unchanged within the simulation. Only the function name,
fixedPrice, must be specified in price.model element in fleets.ctrl object.

fleets.ctrl[[fleet.name]][[stock.name]]\$price.model <- 'FixedPrice'

elasticPrice: Elastic price model

This function implements the price function used in Kraak et al. [2004]:

Pa,y,s,f = Pa,0,s,f ·
(
La,0,s,f
La,y,s,f

)ea,s,f

(12)

It uses base price, Pa,0,s,f , and base landings, La,0,s,f to calculate the new price Pa,y,s,f using a elasticity
parameter ea,s,f , (e ≥ 0). If the base landings are bigger than current landings the price is increased
and decreased if the contrary occurs. a, y, s and f correspond to the subscripts for age, year, season
and fleet, respectively. For simplicity, the iteration subscripts have been omitted but all the elements in
the equation are iteration dependent. As prices could also depend on total landings instead of on fleet’s
landings, there is an option to use La,0,s instead of La,0,s,f in the formula above.

Although price is stored at metier and stock level in FLFleetsExt, this function assumes that price is
common to all metiers within a fleet and it is calculated at fleet level.

The fleets.ctrl argument in elasticPrice function

When elasticPrice is used, the following arguments must be specified, at fleet and stock level (i.e.
for fleets.ctrl[[fleet.name]][[stock.name]]):

price.model: ’elasticPrice’.

pd.Pa0: An array with dimension [age = na, season = ns, iter = ni] to store base price, Pa,0,s,f .

pd.La0: An array with dimension [age = na, season = ns, iter = ni] to store base landings, La,0,s,f .

pd.els: An array with dimension [age = na, season = ns, iter = ni] to store price elasticity, ea,s,f .

pd.total: Logical. If TRUE the price is calculated using total landings and if FALSE the landings of the
fleet in question are used to estimate the price.

4.3.4 Capital models

The following capital model functions are currently available:

fixedCapital: Fixed capital model

The capacity and catchability are given as input data and are unchanged within the simulation. Only
the function name, fixedCapital, must be specified in capital.model element of fleets.ctrl object.

fleets.ctrl[[fleet.name]]\$capital.model <- 'FixedCapital'

SCD: Simple Capital Dynamics model

In this simple function catchability is not updated, it is an input parameter, and only capacity is
updated depending on some economic indicators. The following variables and indicators are defined at
fleet and year level (fleet and year subscripts are omitted for simplicity):

FuC: Fuel Cost.

CrC: Crew Cost.

V aC: Variable Costs.

FxC: Fixed Costs (repair, maintenance and other).

CaC: Capital Costs (depreciation and interest payment).
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Rev: Revenue, given by the formula:

Revf =
∑
m

∑
s

∑
a

Lm,s,a · Pa,s

where L is the total landings, P the price and m, s, a the subscripts for metier, season and age,
respectively.

BER: Break Even Revenue, the revenues that make profit equal to 0.

BER =
FxC + CaC

1− FuC
Rev
− CrC

Rev−FuC + FuC·CrC
Rev·(Rev−FuC)

− V aC
Rev

In principle the investment, Inv, is determined by:

Inv0 =
Rev −BER

Rev
But not all the profits are dedicated to increase the fleet, thus:

Inv = η · Rev −BER
Rev

where η is the proportion of the profits that is used to buy new vessels. Furthermore, investment in new
vessels will only occur if the operational days of existing vessels is equal to maximum days. If this occurs,
the investment/disinvestment decision, Ω, will follow the rule below:

Ωy =


Inv , if (Inv0 < 0 and η · |Inv0| < ω1) | (Inv0 > 0 and η · |Inv0| < ω2)

−ω1 ∗ κy−1 , if Inv0 < 0 and η · |Inv0| > ω1

ω2 ∗ κy−1 , if Inv0 > 0 and η · |Inv0| > ω2

(13)

where ω2 stands for the limit on the increase of the fleet relative to the previous year and ω1 for the limit
on the decrease of the fleet relative to the previous year.

4.3.5 Covariates models

The following covariates model functions are currently available:

fixedCovar: Fixed covariates model

The covariates that follow this model are given as input data and are unchanged within the simulation.
Only the function name, fixedCovar, must be specified in process.model element of covars.ctrl object.

covars.ctrl[[covar.name]]\$process.model <- 'fixedCovar'

ssb.get: model to get the SSB of one stock

This function is used for including the real Spawning Stock Biomass of one of the simulated stocks as
a covariate when fitting the stock recruitment relationship of another stock. In the covars.ctrl object
the following elements need to be specified:

process.model: ’ssb.get’.

ssb.stock: Character string with the name of the stock for which you want to get the SSB.

spwn.sson: Numeric argument with the spawning season of this stock.

sr.covar: Character string with the name of the stock for wich you want to include the influence of stock
ssb.stock in its stock recruitment relationship.

4.3.6 Observation models: catch and biological parameters

The functions in this section are used to generate a FLStock object from FLBiol and FLFleetsExt objects.
The former is used to fill the slots relative to biology, (stock.wt, mat and m slots), and the last to fill the
slots relative to catch, landings and discards. Whereas harvest, stock and stock.n slots are left empty
and harvest.spwn and m.spwn are set equal to 0.
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age2ageDat This function creates an age structured FLStock from age structured FLBiol and FLFleet-

sExt objects. The slots of the FLStock object are filled in the following way:

landings.n: Observed landings at age are obtained from fleets object, summing them up along sea-
sons, units, metiers and fleets. After summing up, two sources of uncertainty are introduced, one
related to aging error and the second one related to misreporting. Aging error is specified through
ages.error argument, an array with dimension [age = na, age = na, year = ny, iter = ni].
For each year and iteration, each element (i,j) in the first 2 dimensions indicates the proportion
of individuals of age i that are wrongly assigned to age j, thus the sum of the elements along the
first dimension must be equal to 1. For each year and iteration, the real landings at age are multi-
plied matricially with the corresponding sub-matrix of ages.error object. Afterwards, the second
source of uncertainty is introduced multiplying the obtained landings at age by land.nage.error,
an FLQuant with dimension [age = na, year = ny, unit = 1, season = 1, area = 1, iter =

ni]. Once uncertainty is introduced in landings at age and weight at age, the total landings are
computed and compared with the TAC. If landings are lower than TAC · TAC.ovrsht, the observed
landings at age are unchanged, but if they were higher, the landings at age would be reduced by

1
TAC.ovrsht

where TAC.ovrsht is a positive real number.

landings.wt: Observed landings weight at age is derived from fleets object, averaging it along seasons,
units, metiers and fleets. After averaging, 2 sources of uncertainty are introduced, one related
to aging error and the second one related to misreporting. Aging error is the same as the one
used in the landings at age. For each year and iteration, the real weight at age is weighted by
the proportion of landings in each age group and multiplied matricially with the corresponding sub-
matrix of ages.error object. Afterwards, the second source of uncertainty is introduced multiplying
the obtained weight at age by land.wgt.error an FLQuant with dimension [age = na, year = ny,

unit = 1, season = 1, area = 1, iter = ni].

discards.n: Observed discards at age are obtained in the same way as the landings but summing up the
discards instead of landings and using, in the second source of error, the object disc.nage.error,
an FLQuant with dimension [age = na, year = ny, unit = 1, season = 1, area = 1, iter =

ni]. The object ages.error is the same as the one used in the derivation of landings at age.

discards.wt: Observed discards weight at age is obtained in the same way as the landings but averaging
along discards weight instead of landings weight and using, in the second source of error, the
object disc.wgt.error, an FLQuant with dimension [age = na, year = ny, unit = 1, season =

1, area = 1, iter = ni]. The object ages.error is the same as the one used in the derivation
of landings at age.

discards, landings: Observed total discards and landings are derived from observed landings and dis-
cards at age and their corresponding weight.

catch, catch.n, catch.wt: Slots related to observed catches are derived from the observed landings
and discards at age and their corresponding weight.

m: Observed natural mortality at age is obtained from m slot in FLBiol. Adittionally 2 sources of uncer-
tainty are introduced. Firstly, for each year and iteration, this mortality is matriciallly multiplied
by the ageing error (the same as the one used for catch related slots). Afterwards, the object is mul-
tiplied by nmort.error, where nmort.error is an FLQuant with dimension [age = na, year = ny,

unit = 1, season = 1, area = 1, iter = ni]. nmort.error is used to introduce multiplicative
uncertainty in the observation of natural mortality.

mat: Observed proportion of individuals mature at age is obtained from mat slot in FLBiol object. Firstly,
for each year and iteration, this proportion is matriciallly multiplied by the ageing error (the same
as the one used for catch related slots). Afterwards, the object is multiplied by mat.error, where
mat.error is an FLQuant with dimension [age = na, year = ny, unit = 1, season = 1, area

= 1, iter = ni]. mat.error is used to introduce multiplicative uncertainty in the observation of
maturity.

bio2bioDat This function creates a FLStock object aggregated in biomass from FLBiol and FLFleet-

sExt objects aggregated in biomass.

m, mat, landings.n, landings.wt, discards.n, discards.wt, catch.n, catch.wt : Observed val-
ues for these slots are set to NA.

discards: Observed discards are obtained as follows: the discards are summed up along fleets and metiers
and then uncertainty (observation error) is introduced using a multiplicative error. This multiplica-
tive error is specified through disc.bio.error argument an FLQuant with dimension [quant = 1,

year = ny, unit = 1, season = 1, area = 1, iter = ni].
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landings: Observed landings are derived in the same way as discards but the argument used to introduce
uncertainty is called land.bio.error in this case. Once uncertainty is introduced in landings, they
are compared with the TAC. If the landings are lower than TAC · TAC.ovrsht, the observed landings
are unchanged but if there were higher the landings would be reduced by 1

TAC.ovrsht
, where TAC.ovrsht

is a positive real number.

catch: Observed catch slot is equal to the sum of landings and discards.

age2bioDat This function creates a FLStock aggregated in biomass from age structured FLBiol and

FLFleetsExt objects. The function works exactly in the same way as bio2bioDat function.

4.3.7 Observation models: population

These type of models are useful when no assessment model is used in the next step of the MPM and
management advice is just based on the population ’observed’ in this step. age2agePop, bio2bioPop

and age2bioPop are equal to their relatives in the previous section but in this case stock numbers, stock
biomass and harvest are observed, with or without error, depending on the arguments given.

NoObsStock

This function is used when the advice is given independently to stock status. Therefore, we do not
need to observe the population.

perfectObs

This function creates a FLStock from FLBiol and FLFleetsExt objects. The FLBiol and FLFleetsExt

objects can be either aggregated in biomass or age structured and the returned FLStock object will have
the same structure, but with unit and season dimensions collapsed. This function does not introduce any
observation uncertainty in the observation of the different quantities stored in the FLStock or FLFLeetsExt
objects. Slots relative to biological parameters are calculated averaging across units and seasons, those
relative to catch are calculated summing up across units and seasons, and numbers at age or biomass are
taken from the start of the first season, except recruitment that is obtained summing up the recruitment
produced along seasons. Finally, fishing mortality is calculated numerically from numbers at age and
natural mortality.

age2agePop

This function operates exactly in the same way as its counterpart in the previous section, age2ageDat,
but it also fills stock.n, stock.wt, stock and harvest slots:

stock.n: First, the numbers at age are calculated as in perfectObs function and then 2 sources of
uncertainty are introduced, as it is done in landings and discards at age. The error attributed to
aging error is given by the same argument as in landings and discards at age, ages.error. The
second uncertainty is introduced in the same way but by different argument, stk.nage.error.

stock.wt: First, the weight at age is calculated as in perfectObs function and then 2 sources of un-
certainty are introduced, as it is done in weight at age of landings but replacing landings by stock
numbers at age. The error attributed to aging error is given by the same arguments as in landings,
ages.error. The second uncertainty is introduced in the same way but by different argument,
stk.wgt.error.

stock: This is equal to the sum of the product of stock.n and stock.wt.

harvest: Harvest is numerically calculated from stock numbers at age and natural mortality.

bio2bioPop

This function operates exactly in the same way as its counterpart in the previous section bio2bioDat

but it also fills stock and harvest slots:

stock: Stock biomass is calculated multiplying n and wt slots in the FLBiol object and summing up
along seasons (note that unit dimension is always equal to 1 in populations aggregated in biomass).
After, that uncertainty in the observation is introduced multiplying the obtained biomass by the
argument stk.bio.error, which is an FLQuant with dimension [quant = 1, year = ny, unit =

1, season = 1, area = 1, iter = ni]

harvest: Harvest is calculated as the ratio between catch and stock biomass.
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age2bioPop

This function operates exactly in the same way as its counterpart in the previous section age2bioDat,
but it also fills stock and harvest slots. These two slots are calculated as in bio2bioPop function but
summing up along ages in the case of stock slot.

4.3.8 Observation models: abundance indices

Currently, there are 2 functions that simulate abundance indices, one that generates age structured
abundance indices ageInd and a second one that generates abundance indices in biomass bioInd. The
last one can be applied to both age structured and biomass dynamics populations. In both cases a linear
relationship between the index and the abundance is assumed being the catchability q the slope, i.e:

I = q ·N or I = q ·B

ageInd: age index observation model

Age structured abundance indices are obtained multiplying the slot n of FLBiol with the catchability
of the index (catch.q in FLIndex object). The FLIndex is an input object and the index slot is yearly
updated. Two sources of uncertainty are introduced, one related to aging error and a second one related
to random variation. Aging error is the same as in the observation of landings at age and the argument is
the same ages.error. Afterwards, the second source of uncertainty is introduced multiplying the index
by the slot index.var of the FLIndex object. The indices do not need to cover the full age or year ranges.

bioInd: biomass index observation model

Biomass abundance indices are generated in the same way as age structured indices but without the
error associated to age.

NoObsIndex: no index observation

This function is used when abundance indices are not required.

4.3.9 Observation models: fleets

At this point there are no functions to observe the fleets, their catch or catch at age is just observed in
an aggregated way in the functions defined in previous section.

4.3.10 Management advice models

Different management advice models have been implemented. Some of them are methods generally
applicable (e.g. fixedAdvice, annualTAC, IcesHCR, annexIVHCR, CFPMSYHCR, F2CatchHCR, MAPHRC and
MultiStockHRC), whereas others are designed specifically for particular case studies (e.g. FroeseHCR,
ghlHCR, aneHCRE, neaMAC_ltmp, little2011HCR, pidHCR and pidHCRtarg). All these rules are single-
stock, apart from MAPHRC and MultiStockHRC, which are multi-stock harvest control rules.

fixedAdvice: fixed advice model

This function is used when the advice is fixed and independent to the stock status. TAC or TAE
values should be given as input in the advice object.

annualTAC: annual TAC model

This function mimics the typical harvest control rule (HCR) used in recovery and management plans
implemented in Europe. The function is a wrapper of the fwd function in FLash library. As fwd is only
defined for age structured populations, within FLBEIA a new function fwdBD has been coded. fwdBD is a
tracing of fwd but adapted to work with populations aggregated in biomass. The advice is produced in
terms of catch (i.e TAC).

The call to annualTAC function within FLBEIA is done as:

annualTAC(stocks, advice, advice.ctrl, year, stknm, ...)

If the management is being running in year y, the function works as follows:

1. Project the observed stock one year forward from 1st of January of year y up to 1st of January of
year y+1 (intermediate year).

2. Apply the HCR and get the TAC for year y+1. Depending on the definition of the HCR the stock
could be projected several years forward.
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advice.ctrl[[stock.name]] for annualTAC

HCR.model: ’annualTAC’.

nyears: Number of years to project the observed stock from year y-1.

wts.nyears: Number of historic years to be used in the average of biological parameters. The average is
used in the projection of biological parameters.

fbar.nyears: Number of historic years to be used in the average of selection pattern. The average is
used in the projection of selection pattern.

f.rescale: Logical. If TRUE rescale to status quo fishing mortality.

disc.nyears: Number of years over which to calculate mean for discards.n and landings.n slots.

fwd.ctrl: Element of class fwdControl. For details on this look at the help page in FLash object. The
only difference is the way the years are introduced. As this object is defined before simulation and it
is applied year by year, the definition of the year should be dynamic. Thus the following convention
has been taken:

� year = 0 indicates the year when management is taking place, (intermediate year).

� year = -1 corresponds with one year before the year when management is taking place. In this
case, whithin annualTAC function, coincides with the year up to which data is available, (data
year). Then, -2 would indicate 2 years before,-3 would indicate 3 years before and so on.

� year = 1 corresponds with one year after the year when management is taking place. In this
case, whithin annualTAC function, coincides with the year for which management advice is going
to be produced, (TAC year). Then, 2 would indicate 2 years after the year when management
is taken place, 3 would indicate 3 years after and so on.

In this way, within the simulation, each year, the intermediate year is summed up to the year in
the original control argument and the correct year names are obtained.

AdvCatch: Vector with a logic value for each year. TAC is given in terms of catch, if TRUE, or landings,
if FALSE.

sr: The stock recruitment relationship used to project the observed stock forward, not needed in the
case of population aggregated in biomass. sr is a list with 3 elements, model, params and years.
model is mandatory and the other 2 are complementary, if params is given years is not necessary.
model can be any stock-recruitment model defined for FLSR class. params is a FLPar model an
if specified it is used to parameterized the stock-recruitment model. years is a numeric named
vector with 2 elements ’y.rm’ and ’num.years’, for example c(y.rm = 2, num.years = 10). This
element is used to determine the observeds years to be used to estimate the parameters of the stock
recruitment relationship. In the example the last 2 observations will be removed and starting from
the year before to the last 2 observed years 10 years will be used to estimate the stock-recruitment
parameters.

growth.years: This argument is used only for stocks aggregated in biomass and it indicates the years to
be used in the estimation of annual population growth. This growth is used to project the population
forward. growth.years is a numeric named vector with 2 elements ’y.rm’ and ’num.years’ which
play the same role played in sr[[’years’]] argument defined in the previous point.

IcesHCR: ICES harvest control rule

The function represents the HCR used by ICES to generate TAC advice in the MSY framework. It
is a biomass based HCR, where the TAC advice depends on F in relation to several reference points: a
biomass that triggers the F reduction (Btrigger), the limit biomass below which there is a high risk of
impaired recruitment (Blim) and fishing mortality that leads to MSY (FMSY ).

Current function calls annualTAC, given an F objective calculated as:

Ftarget =


0 , if B < Blim

FMSY ·B/Btrigger , if B < Btrigger

FMSY , if B ≥ Btrigger
(14)

The call to IcesHCR function within FLBEIA is done as:

IcesHCR(stocks, advice, advice.ctrl, year, stknm, ...)
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advice.ctrl[[stock.name]] for IcesHCR

HCR.model: ’IcesHCR’.

nyears: Number of years to project the observed stock from year y-1.

wts.nyears: Number of historic years to be used in the average of biological parameters, if missing last
3 years are used. The average is used in the projection of biological parameters.

fbar.nyears: Number of historic years to be used in the average of selection pattern, if missing last 3
years are used. The average is used in the projection of selection pattern.

f.rescale: Logical. If TRUE rescale to status quo fishing mortality.

ref.pts: Matrix of dimension [3,it], where rows contain values for Blim, Btrigger and FMSY , and col-

names(ref.pts) = c(Blim, Btrigger, Fmsy).

AdvCatch: Vector with a logic value for each year. TAC is given in terms of catch, if TRUE, or landings,
if FALSE.

intermediate.year: Sets how to calculate the catches in the intermediate year. If it is set to ’Fsq’, then
the catches are estimated based on the last estimated F; whereas if other value set, the catches are
set to the TAC adviced for this intermediate year. This second approach is used for the cases when
the assessment is carried out including also the information on this intermediate year, as is the case
for the Bay of Biscay anchovy.

sr: The stock recruitment relationship used to project the observed stock forward, not needed in the
case of population aggregated in biomass. sr is a list with 3 elements, model, params and years.
For more details see parameter description in annualTAC (above).

growth.years: This argument is used only for stocks aggregated in biomass and it indicates the years to
be used in the estimation of annual population growth. This growth is used to project the population
forward. For more details see parameter description in annualTAC (above).

FroeseHCR: Froese harvest control rule

This function recreates the HCR defined in the paper by Froese et al. [2011], which is a biomass based
HCR. TAC advice is calculated depending on perceived biomass in relation to biological reference points
as follows:

TAC =


0 , if B < Btrigger

MSY · β · 1/(1− α0) ∗ (−α0 +B/Btarget) , if Btrigger ≤ B < Btarget

MSY · β , if B ≤ Btarget
(15)

where Btrigger = α0 ·BMSY and Btarget = α1 ·BMSY .
The call to annualTAC function within FLBEIA is done as:

FroeseHCR(stocks, advice, advice.ctrl, year, stknm,...)

advice.ctrl[[stock.name]] for FroeseHCR

HCR.model: ’FroeseHCR’.

ref.pts: Matrix of dimension [5,it], where rows contain values for BMSY , MSY , α0, α1 and β, and
colnames(ref.pts) = c(Bmsy, MSY, alpha_0, alpha_1, beta).

annexIVHCR: ICES Annex IV harvest control rule

This funcion emulates the HCR used by the European Comission and ICES to generate the TAC
advice for data poor stocks. TAC advice is calculated depending on previous year TAC and the trend of
an available index as follows:

TACy+1 = γ · TACy (16)

γ =


1− β , if Bnow/Bref ≤ 1− α
1 , if 1− α < Bnow/Bref < 1 + α & type = 2

β/α · (Bnow/Bref − 1) + 1 , if 1− α < Bnow/Bref < 1 + α & type = 4

1 + β , if Bnow/Bref ≥ 1 + α

(17)

where: Bnow = (Iy−1 + Iy−2)/2 and Bref = (Iy−3 + Iy−4 + Iy−5)/3.
The call to annexIVHCR function within FLBEIA is done as:

annexIVHCR(indices, advice, advice.ctrl, year, stknm,...)
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advice.ctrl[[stock.name]] for annexIVHCR

HCR.model: ’annexIVHCR’.

index: Either the name or the position of the index in FLIndices object.

ref.pts: Matrix of dimension [2,it], where rows contain values for α and β, and colnames(ref.pts) =

c(alpha, beta).

type: Numeric (options 2 or 4). This parameter determinines the value of γ in Equation 17.

ghlHCR: Greenland halibut harvest control rule

This function mimics thee model-free HCR used in the management of greenland-halibut in NAFO.
TAC advice is calculated depending on previous year TAC and the trends of three indices available for
the stock as follows:

TACy+1 = TACy + λ · slope (18)

λ =

{
α0 , if slope < 0

α1 , if slope > 0
(19)

where λ value has the following additional constraint: 1 − β ≤ λ ≤ 1 + β, and slope is the mean of the
slopes obtained when calculating a linear model for each of the indices.

The call to ghlHCR function within FLBEIA is done as:

ghlHCRC(indices, advice, advice.ctrl, year, stknm,...)

advice.ctrl[[stock.name]] for ghlHCR

HCR.model: ’ghlHCR’.

ref.pts: Matrix of dimension [3,it], where rows contain values for α0, α1 and β, and colnames(ref.pts)

= c(alpha_0, alpha_1, beta).

aneHCRE: Bay of Biscay anchovy first long term management plan - HCRE

The function recreates the HCR used in the Bay of Biscay anchovy first long term management plan,
where HCR was known as Rule E.

TAC advice is calculated depending on perceived biomass in relation to biological reference points as
follows:

TAC =


0 , if SSB ≤ 24, 000tons

7, 000 , if 24, 000 < SSB < 33, 000tons

hr · SSB , if SSB ≥ 33, 000tons

(20)

whith the following additional constraint: TAC ≤ 33, 000 tons.
The call to aneHCRE function within FLBEIA is done as:

aneHCRE(stocks, advice, advice.ctrl, year, stknm,...)

neaMAC_ltmp: Northeast Atlantic mackerel long term management plan

This function emulates the HCR used in the north-east atlantic mackerel long term management plan.
It is a particular case of the IcesHCR.

F2CatchHCR: F to catch harvest control rule

This function transforms the fishing mortality advice given as input data to catch advice without any
other restriction. The function is a copy-paste from IcesHCR, but in this case target F is directly taken
from ref.pts[’Ftarget’,year+1,].
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little2011HCR: Little’s harvest control rules

This function mimics the HCR defined in the paper by Little et al. [2011], with an additional constraint,
Cmax, not to allow very high catches. This constraint can be turned off setting Cmax to a very high value
or Inf.

TAC advice is calculated depending on an index in relation to biologicalsome reference points as
follows:

TAC = min(Ctarg ·max(0, (Iy − Ilim)/(Itarg − Ilim)), Cmax) (21)

where: Ctarg and Cmax correspond to target and maximum catches, respectively, Iy corresponds to the
mean value of the index in the last two years and Itarg, Ilim) are reference values with respect to the
index.

The call to little2011HCR function within FLBEIA is done as:

little2011HCR(indices, advice, advice.ctrl, year, stknm, ...)

advice.ctrl[[stock.name]] for little2011HCR

HCR.model: ’little2011HCR’.

index: Either the name or the position of the index in FLIndices object.

ref.pts: Matrix of dimension [4,it], where rows contain values for Ctarg, Ilim, Itarg and Cmax. and
colnames(ref.pts) = c(Ctarg, Ilim, Itarg, Cmax).

pidHCR and pidHCRtarg: Pomaerede’s harvest control rules

These functions recreates the model free HCRs used for hake and wich are defined in the paper by
Pomarede et al. [2010].

The call to these functions within FLBEIA is done as:

pidHCR(indices, advice, advice.ctrl, year, stknm, ...)

pidHCRtarg(indices, advice, advice.ctrl, year, stknm, ...)

advice.ctrl[[stock.name]] for pidHCR and pidHCRtarg

HCR.model: ’pidHCR’ or ’pidHCRtarg’.

index: Either the name or the position of the index in FLIndices object.

ref.pts: For pidHCR, matrix of dimension [5,it], where rows contain values for Kp, Ki, Kd, τ and α;
whereas for function pidHCRtarg it has dimension [6,it] with an additional row for Itarg values.
colnames(ref.pts) = c(Kp, Ki, Kd, tau, alpha, Itarg).

MAPHRC: harvest control rule for multi-annual management plans

This function emulates the HCR proposed by the European Comission for the evaluation of multi-
annual management plans (MAPs) in 2015. This HCR is specially designed to fulfill the requirements of
MAPs for North Western Waters and only works for age-structured stocks.

The call to MAPHRC function within FLBEIA is done as:

MAPHRC(stocks, advice, advice.ctrl, year, stknm, ...)

advice.ctrl[[stock.name]] for MAPHRC

HCR.model: ’MAPHRC’.

wts.nyears: Number of historic years to be used in the average of biological parameters, if missing last
3 years are used. The average is used in the projection of biological parameters.

fbar.nyears: Number of historic years to be used in the average of selection pattern, if missing last 3
years are used. The average is used in the projection of selection pattern.

f.rescale: Logical. If TRUE rescale to status quo fishing mortality.

ref.pts: FLQuant of dimension [quant = 4, year = ny, unit = 1, season = 1, area = 1, iter =

ni], where quant dimension contains values forBpa, Ftarget, Cup and Clo, and dimnames(ref.pts)[1]

= c(Bpa, Ftarget, Cup, Clo).

N: Numeric value, corresponding to the number of years to recover SSB.

AdvCatch: Vector with a logic value for each year. TAC is given in terms of catch, if TRUE, or landings,
if FALSE.
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sr: The stock recruitment relationship used to project the observed stock forward, not needed in the
case of population aggregated in biomass. sr is a list with 3 elements, model, params and years.
For more details see parameter description in annualTAC (above).

CFPMSYHCR: flexible harvest control rule for multi-annual management plans

This function is a version of the MAPHCR, adapting it to allow flexibility in the year Fmsy is achieved.
The user can specify the year in which you aim to reach FMSY , with a linear transition between Fsq to
FMSY in the intervening years.

The call to CFPMSYHCR function within FLBEIA is done as:

CFPMSYHCR(stocks, advice, advice.ctrl, year, stknm, ...)

advice.ctrl[[stock.name]] for CFPMSYHCR

HCR.model: ’CFPMSYHCR’.

wts.nyears: Number of historic years to be used in the average of biological parameters, if missing last
3 years are used. The average is used in the projection of biological parameters.

fbar.nyears: Number of historic years to be used in the average of selection pattern, if missing last 3
years are used. The average is used in the projection of selection pattern.

f.rescale: Logical. If TRUE rescale to status quo fishing mortality.

ref.pts: FLQuant of dimension [quant = 5, year = ny, unit = 1, season = 1, area = 1, iter =

ni], where quant dimension contains values forBpa, Ftarget, Y rtg, Cup and Clo, and dimnames(ref.pts)[1]

= c(Bpa, Ftarget, Yrtg, Cup, Clo).

N: Numeric value, corresponding to the number of years to recover SSB.

AdvCatch: Vector with a logic value for each year. TAC is given in terms of catch, if TRUE, or landings,
if FALSE.

sr: The stock recruitment relationship used to project the observed stock forward, not needed in the
case of population aggregated in biomass. sr is a list with 3 elements, model, params and years.
For more details see parameter description in annualTAC (above).

MultiStockHRC: multi-stock harvest control rule

This function produces TAC advice for several stocks simultaneously, this HCR is based on IcesHCR.
It uses a fishing mortality target and an upper bound to conciliate the TAC advices. In the case of stocks
without exploitation rate estimates, then it uses the catch. At present this function only works with
single iterations.

TAC advice is calculated depending on fishing mortality in relation to biological reference points of all
the stocks. First, for each stock we calculate the single stock Ftarget depending on its status in relation
to the BRPs.

Ftarget =


0 , if B < Blim

FMSY ·B/Btrigger , if Blim ≤ B < Btrigger

FMSY , if B ≥ Btrigger
(22)

Second, we calculate the ratio between Ftarget and Fsq and calculate the maximum:

Fadv0[stock.name] = λ0 · Fsq|λ0 = maxi∈names(biols)(Ftarget/Fsq)[i] (23)

Therefore, there is only one stock for which Fadv0 = Ftarget and for the rest Fadv0 > Ftarget. Third, we
calculate the ratio between Fupp and Fsq and calculate the minimum:

xst = Fupp[stock.name]/Fadv0[stock.name]λ0 · Fsq∀st ∈ names(biols) (24)
If xst ≥ 1 ∀st, λ1 = 1

If ∃st & xst < 1, λ1 = min(
Fupp[st]

Fadv0[st]
)

&Fadv1[st] = λ1 · Fadv0[st]

(25)

Therefore, there is only one stock for which Fadv0 = Ftarget and for the rest Fadv0 > Ftarget. Finally,

Fadv[stock.name] = λ1 · λ0 · Fsq (26)

And the TAC for each stock is calculated based on advised fishing mortality (i.e. Fadv[stock.name]).
The call to annualTAC function within FLBEIA is done as:

29



MultiStockHCR(stocks, indices, advice, advice.ctrl, year, stknm,...)

In relation to IcesHCR this new HCR has two additional arguments:

advice.ctrl[[’stocksInHCR’]]: A vector with the name of the stocks that are taken into account in
the calculation of advice.

advice.ctrl[[stock.name]][[’ref.pts’]]: A new row in the matrix with Fupp value.

4.4 Fourth level functions

These functions are called by the third level functions and, for the time being, are the functions in the
lowest level within FLBEIA.

4.4.1 Stock-recruitment relationships

Stock-recruitment relationships are used, for example, within ASPG and annualTAC functions. The stock-
recruitment relationship used in ASPG is defined in the slot model of FLSRsim object and it defines the
true recruitment dynamics of the stocks. Within annualTAC, the stock-recruitment relationship used is
defined in:

advice.ctrl[[stock.name]][[’sr’]][[’model’]]

element and it describes the ’observed’ stock-recruitment dynamics (used) in the management process.
In FLCore package there are several stock-recruitment relationships already defined and all can be

used within FLBEIA. Some of the functions available are:

geomean: Recruitment is independent of the stock and equal to the geometric mean of historical period.

R = α = n
√
R1 · . . . ·Rn

bevholt: Beverton and Holt model with the following parameterization:

R =
α · SSB

(β + SSB)

where α is the maximum recruitment (asymptotically) and β is the stock level needed to produce
the half of maximum recruitment α/2 (α, β > 0).

ricker: Ricker stock-recruitment model fit with the following parameterization:

R = α · SSB · e−β·SSB

where α is related to productivity and β to density dependence. α is the recruit per stock unit at
small stock levels. (α, β > 0).

segreg: Segmented regression stock-recruitment model fit:

R =

{
α · SSB , if SSB < β

α · β , if SSB ≥ β

where α is the slope of the recruitment for stock levels below β and α · β is the mean recruitment
for stock levels above β (α, β > 0).

shepherd: Shepherd stock-recruitment model fit:

R = α · SSB

(1 + (S/β)γ)

This model generalizes Beverton and Holt and Ricker models (γ = 1 corresponds with Beverton and
Holt model, γ > 1 takes a Ricker-like shape and with γ < 1 the curve rises indefinitely).

bevholtAR1, rickerAR1, segregAR1: Beverton and Holt, Ricker and Segmented regression stock-recruitment
models with autoregressive normal log residuals of first order. In the model fit the corresponding
stock-recruitment model is combined with an autoregressive normal log likelihood of first order for
the residuals. If Rt is the observed recruitment and R̂t is the predicted recruitment, an autoregres-
sive model of first order is fitted to the log-residuals, xt = log(Rt/R̂t).

xt = ρ · xt−1 + ε

where ε ∼ N(0, σ2
ar).
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cushing: Cushing stock recruitment model fit:

R = α · SSBβ

where α, β > 0.

bevholtSV, rickerSV, segregSV, shepherdSV, cushingSV: Beverton and Holt, Ricker, Segemented re-
gression, Shepherd and Cushing stock-recruitment models with α and β parameterisation converted
into steepness and virgin biomass (s and v).

rickerCa: Ricker stock-recruitment model with covariates, parameterised as:

R = α · (1− γ · covar) · SSB · e−β·SSB

Additionally, the following stock-recruitment relationships are defined in FLBEIA package:

hockstick: Hockey stick stock-recruitment model fit:

R =

{
α · S , if SSB < β

α · β , if SSB ≥ β

where α is the slope of the recruitment for stock levels below β and α · β is the mean recruitment
for stock levels above β (α, β > 0).

redfishRecModel: Redfish recruitment model developed by Benjamin Planque, with the formula:

Ry = redfishRec(Ry−1, σ,minrec,maxrec) ·

{
SSB
α

, if SSB < α

1 , if SSB ≥ α
Being:

redfishRec(Ry−1, σ,minrec,maxrec) = Ry−1 + rnorm(n = 1,mean = 0, sd = σ)

minrec ≤ redfishRec(Ry−1, σ,minrec,maxrec) ≥ maxrec
Where Ry−1 corresponds to previous year’s recruitment, γ the standard deviation of the historic
recruitment and minR, maxR to the minimun and maximum recruitments historically observed, re-
spectively.

aneRec_pil, pilRec_ane: Ricker models with a covariate in the exponent, for simulating stk1 recruit-
ment assuming predation on its eggs by stk2, given by the formula:

Rstk1 = α · SSBstk1 · e−β·SSBstk1+γ·SSBstk2

ctRec: constant recruiment. There is not recruitment modelling and therefore expected recruitment
values for the projection period has to be fixed a priori.

There could be more stock-recruitment relationships defined in FLCore or FLBEIA, thus, if you are
interested in using a model not defined here take a look at SRModels help page in FLCore package. New
stock-recruitment models to be used in FLSRsim class can be defined in two ways:

1. Using a formula in slot model:
rec ∼ Φ(X)

where Φ is a function of ssb and parameters and covariates stored in params and covar slots
respectively.

2. Defining a function in R, foo <- function(X), and using the name of the function, foo, in slot
model. The function arguments must be among ssb and parameters and covariates stored in params

and covar slots respectively.

4.4.2 Catch production functions

The catch production functions can be different for the same third level effort model. Currently, there
are three catch production functions available. The first two correspond with Cobb-Douglas production
functions [Clark, 1990, Cobb and Douglas, 1928] but in one case the model operates at stock level and
in the second one at age class level. The last one is used when information on effort is lacking and
consequently catches are set independently from effort.
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CobbDouglasBio: Cobb-Douglas production function at stock level

The total catch of the fleet is calculated according to the Cobb-Douglas production function:

C = q · Eα ·Bβ (27)

where C denotes total catch and B total biomass (both in weight), q the catchability and E the effort.
α and β are the elasticity parameters associated to labor and capital (biomass in this case), respectively.
These parameters are associated to the existing technology.

As α and β parameters depend on the stock and the technology, Cobb-Douglas function is applied at
metier level. Thus, the catch of a certain fleet f is given by:

Cf =
∑
m∈Mf

qf,m ·Bβf,m · (Ef · δf,m)αf,m (28)

where Mf represents the set of metiers of fleet f and δ the effort share among metiers.

Derivation of Catch-at-age. Once the total catch is calculated, it is divided into catch at age
using selectivity at age, sa,f,m, and biomass at age in the population, Ba:

Ca,f,m =
Cf,m∑

a sa,f,m ·Ba
· sa,f,m ·Ba (29)

Derivation of Equation 29:

� If the whole population were accessible to the gear, the catch of age a would be:

sa,f,m ·Ba

� Thus, if the whole population were accessible to the gear, the total catch we could obtain would be:∑
a

sa,f,m ·Ba

� But, the actual total catch is Cf , so theoretically the proportion of the population that have been
accessible is1:

Cf,m∑
a sa,f,m ·Ba

� Then, if we assume the population is homogeneously distributed we arrive to Equation 29.

The catch at age is then further disaggregated in landings- and discards-at-age using landings’ and
discards’ specific selectivity:

La,f,m =
sla,f,m
sa,f,m

· Ca,f,m and Da,f,m =
sda,f,m
sa,f,m

· Ca,f,m (30)

CobbDouglasAge: Cobb-Douglas production function at age-class level

The catch of the fleets is calculated according to the Cobb-Douglas production function applied at
age-class level, i.e.:

C =
∑
a

Ca = qa · Eαa ·Bβaa (31)

where C denotes catch and B biomass (both in weight), q the catchability, E the effort and a the
subscript for age. α and β are the elasticity parameters associated to labor and capital (biomass in this
case), respectively. These parameters are associated to the existing technology.

As α and β parameters dependent on age classes and technology, Cobb-Douglas function is applied at
metier level. Thus, the catch of a certain fleet f is given by:

Cf =
∑
a

Ca,f =
∑
m∈Mf

∑
a

qa,f,m ·B
βa,f,m
a · (Ef · δf,m)αa,f,m (32)

where Mf represents the set of metiers of fleet f , δ the effort share among metiers and m is the subscript
that indicates the metier.

1If all the age classes were not accessible or completely accessible we would replace sa,f,m by ´sa,f,m = γa,f,m · sa,f,m where
γa,f,m is the proportion of individuals of age a accessible to metier m in fleet f .
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seasonShare: Catches estimation given season share allocation by metier

In case that there is no information on the effort, and therefore effort is not limiting the catches, the
catch at age of each metier can be calculated according to a previously defined season share allocation by
metier. This function is only valid for metiers which target only one stock. Alternatively, the seasonal
share for one stock can be set equal to the one of a reference fleet (usually one which has information on
effort).

Two arguments need to be declared as elements of fleets.ctrl if this function is used:

effort.model: ’fixedEffort’. This argument must be declared at fleet level (i.e.
fleets.ctrl[[fleet.name]]$effort.model)

catch.model: Argument is used to specify the catch production function that will be used to generate
the catch and it must be declared at fleet and stock level (i.e.
fleets.ctrl[[fleet.name]][[stock.name]]$catch.model). That catch production model corre-
sponds with a fourth level function (see Section 4.4.2).

catch.dependence: This argument needs to be set only when aiming to set the seasonal share of one
stock equal to the same stock in other reference fleet and it must be declared at fleet and stock level
(i.e. fleets.ctrl[[fleet.name]][[stock.name]]$catch.dependence). Value has to be set equal
to the name of this reference fleet.

4.4.3 Costs functions

Cost functions have been developed in order to be used within fleets.om. As cost structure could differ
among fleets it has been defined as fourth level function and it works at fleet level. In principle, it could
be useful in both tactic and strategic dynamics of fleets.

TotalCostsPower: Total costs power function

This function sums up the fixed costs (FxC) and the power functions of cost per unit of effort
(CostPUE), crew share per unit of landings (CSPUL) and capital cost per unit capital (CapCostPUC),
mathematically:

Costf =FxCf +
∑
m

(CostPUEf,m · Ef · τf,m)γ1f,m+∑
st

∑
m

CSPULf,m,st · L
γ2f,m,st

f,m,st + CapCostPUCf · Cap
γ3f
f (33)

The fixed cost are given at fleet level, f , cost per unit of effort at metier level, m, and crew share at
fleet, metier and stock, st, level. γ1f,m is the exponent of effort at fleet and metier level in cost of effort
addend, γ2f,m,st the exponent of landing at fleet, metier and stock level in crew share cost addend and
γ3f is the exponent of capital at fleet level in capital cost addend.

5 Smart conditioning

5.1 Functions

FLBEIA requires a number of input arguments to run a simulation; such as biols, SRs, BDs, fleets,
covars, indices, advice, main.ctrl, biols.ctrl, fleets.ctrl, covars.ctrl, obs.ctrl, assess.ctrl
and advice.ctrl. These objects contain biological and economical historical and projection data, and
also point the functions that are going to be used by the model. Here we introduce and explain the
functions that have been generated to facilitate the creation of these objects:

create.biols.data: It generates an FLBiol object for each stock, and includes all of them in a FLBiols

object. It returns an object that could be used as biols argument in FLBEIA function. The function
requires historical data of weight, abundance, natural mortality, fecundity and spawning. In the
projection years, natural mortality, fecundity and spawning, are assumed equal to the average of
the historical years that the user specifies in stk_biol.proj.avg.yrs. The descriptions and format
of the arguments required by the function are presented in Table D.1.

create.SRs.data: It generates a list with FLSRsim objects and returns an object that could be used as
SRs argument in FLBEIA function. This function does not calculate stock-recruitment function’s
parameter values; therefore, they must be calculated previously by the user. In case that the
proportion of spawning per season is not defined in the projection years, then it is assumed equal to
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the average of the historical years range that the user defines. If uncertainty is not an input, then
there is not uncertainty. The descriptions and format of the arguments required by the function are
presented in Table D.2.

create.BDs.data: It generates a list with FLBDsim objects. It returns an object that could be used as
BDs argument in FLBEIA function. This function does not calculate biomass dynamics function’s
parameter values, so they must be introduced by the user. If uncertainty is not an input, then the
function assumes no uncertainty. The descriptions and format of the arguments required by the
function are presented in Table D.3.

create.fleets.data: It generates an FLFleet object for each fleet and includes all of them in an
FLFleets object. It returns an object that could be used as fleets argument in FLBEIA func-
tion. The function requires historical data of effort per fleet, effort share between métiers and,
landings and weight at age per stock. Notice that the input data of landingsẃeight has the same
name as stock weight input in create.biols.data. In case that discards data are available, then its
weight is assumed the same as for landings. The descriptions and format of the arguments required
by the function are presented in Table D.4. The function assumes that when historical data of
effort, fixed cost, capacity or crewshare are introduced, then the projection values of each of them
are the average of the years that the user sets in fl.proj.avg.yrs; in the case of effort share and
variable cost per metier, is set in fl.met_proj.avg.yrs; and in the case of landings at age, discards
at age and price, in fl.met.stk_proj.avg.yrs. If the Cobb-Douglas parameters, alpha, beta and
q (see more information on Section 4.4.2), are not introduced as inputs, then they are created by
the calculate.CBparam function, where it assumes that alpha and beta are equal to 1 and q is the
ratio between total catch and effort per metier multiplied by the stock abundance.

create.indices.data: It generates a list with all the stocks and for each stock a list with FLIndex

objects. It returns an object that could be used as indices argument in FLBEIA function. The
descriptions and format of the arguments required by the function are presented in Table D.5.

create.advice.data: It generates a list with the advice for each of the stocks. It returns an object that
could be used as advice argument in FLBEIA function. In case that the values of TAC and TAE are
not introduced in the projection years, then the model assumes that they are equal to the average of
the historical data that the user defines in stk_advice.avg.yrs. When quota share is not defined
in the projection years, then the function calculates it for each stock as the ratio between catch per
fleet and total catch. The descriptions and format of the arguments required by the function are
presented in Table D.6.

create.biols.ctrl: It creates an object with the name of the growth function for each stock. The object
that returns this function can be used as biols.ctrl argument in FLBEIA function.

create.fleets.ctrl: It creates an object with the fleet dynamics function that is applied for each fleet.
The object that returns this function can be used as fleets.ctrl argument in FLBEIA function.

create.covars.ctrl: It creates an object with the function that is applied to the covariate. The object
that returns this function can be used as covars.ctrl argument in FLBEIA function.

create.obs.ctrl: It creates a function with the observed function for each stock. The object that returns
this function can be used as obs.ctrl argument in FLBEIA function.

create.advice.ctrl: I creates an object with the harvest control rule for each stock, and its parameter
values. The object that returns this function can be used as advice.ctrl argument in FLBEIA

function.

create.assess.ctrl: It creates an object with the name of the kind of assessment that is applied to
each stock. The object that returns this function can be used as assess.ctrl argument in FLBEIA

function.

We generate other functions to simplify the previous ones:

create.list.stks.flqa: It creates a list of FLQuant objects for each stock with the corresponding di-
mensions and dimension names. One of the dimensions in the FLQuant is age; in a range between
the minimum and maximum age. The descriptions and format of the arguments required by the
function are presented in Table D.7.

create.list.stks.flq: It creates a list of FLQuant objects for each stock with the corresponding di-
mensions and dimension names. One of the FLQuant is age, defined as all. The descriptions and
format of the arguments required by the function are presented in Table D.8.
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calculate.CBparam: It creates a list with the three Cobb-Douglas parameters: alpha, beta and q. It
assumes that alpha and beta are equal to 1, and q is calculated as the ratio between total catch
and the multiplication of effort per metier and stock abundance. The descriptions and format of
the arguments required by the function presented in Table D.9.

5.2 Examples

Each test case has three folders: data, R and plots. In the folder called data are the input data in csv

format. In the folder called R is the conditioning script, which: (i) creates the input objects for FLBEIA

and saves them in the same folder with RData format; and (ii) runs the model and makes plots that are
saved in the folder plots. In R folder, there is another folder called results with the output of the FLBEIA

model in RData format.

1 stock, 1 fleet and 1 season: This test case analyzes the dynamics of a fictitious stock (SBR) and a
fictitious fleet (DLL). The fleet has one metier, with the same name as the fleet (DLL). This case
study is an example on how to include in the model: an assessment (XSA), observations data
(disaggregated in ages) or elastic price.

The biological historical data available in this study range from 1990 to 2009 and FLBEIA is run from
1990 to 2025, with first year of projection in 2010. Biological data are described by stock abundance,
weight, spawning, fecundity and natural mortality with three iterations, but only abundance and
weight have some variability. Biological data are age specific in a range of ages between 1 and 12
years and with only one season. The minimum year to calculate the average f is set as 1 and the
maximum as 12. The values of weight, spawning, fecundity and natural mortality in the projection
period are assumed to be equal to the average between 2007 and 2009.

The fleet has historical information on effort, crewshare, capacity and fixed costs. There is only
one metier, so effort share is one. Landings and discards, as well as Cobb-Douglas parameters
(alpha,beta,q) values are introduced as input.

The model applies an age-structured population growth model and catch model. Beverton-holt
autoregressive model is assumed as stock-recruitment relationship and uncertainty is not introduced
in the projection.

2 stocks, 2 fleets and 4 seasons: This test case analyzes the dynamics of two fictitious stocks (stk1
and stk2), with two fictitious fleets (fl1 and fl2). Each of the fleets has two metiers (met1 and
met2) and all the metiers catch both stocks. This case study simulates the management using an
ICES harvest control rule for stock stk1 and annual TAC for stk2. The effort function of both
fleets is different; fixed effort is assumed for fleet fl1 and simple mixed fisheries behavior, limited
by the minimum catch of both stocks, for fleet fl2. There is no assessment in this study and perfect
observation is assumed.

The biological historical data available for both stocks range from 1990 to 2008. The simulation
time covers from 1990 to 2025, with 2009 as the first projection year. Biological data are described
by stock abundance, weight, spawning, fecundity and natural mortality. Biological data of stock
stk1 are age structured in a range from 0 to 15 years, but not for stock stk2, which is modelled in
biomass. The minimum age to calculate the average f for stock stk1 is set as 1 and the maximum
as 5. Stock stk1 has 4 spawning seasons, while stock stk2 only one, then we set different units for
both. The values of weight, spawning, fecundity and natural mortality in the projection period are
assumed to be equal to the average between 2006 and 2008 for both stocks.

Both fleets have historical information on effort and capacity, but only fleet fl2 has fixed cost data.
For each fleet and metier, effort share data are available and only for fleet fl2 are variable costs.
For each fleet and metier, there is age structured data for stock stk1 and in biomass for stk2. Both
fleets have landings and discards data for each stock, but in the case of stock stk2 discards data of
metier met2 in fleet fl1 are missing. Cobb-Douglas parameters (alpha,beta,q) are not introduced
as input; therefore the function create.fleets.data calls calculate.CBparam function to calculate
them.

Since the biological and economical historic data of stock stk1 are age specific, then the model
allows using age-structured population growth and catch model, while in the case of stock stk2

they must be based on biomass. Beverton-Holt model is applied as stock-recruitment relationship
for stock stk1, with 4 spawning seasons, and Pella-Tomlinson biomass dynamics model for stock
stk2. In both cases the parameters in the projection period are introduced as input.
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6 Output summary

There are several functions available to summarise the results of the FLBEIA output.
There are two types of functions:

6.1 Summary functions

Functions that summarise the results of the FLBEIA output in data frames.

summary_flbeia: An array with four dimensions: stock, year, iteration, indicator. The indicators are:
recruitment, ssb, f, biomass, catch, landings and discards.

B_flbeia: Biomass values by stock. An array with three dimensions: stock, year and iteration.

F_flbeia: Fishing mortality values by stock. An array with three dimensions: stock, year and iteration.

SSB_flbeia: Spawning stock biomass values by stock. An array with three dimensions: stock, year and
iteration.

R_flbeia: Recruitment values by stock. If the stock follows a biomass dynamics, then this function gives
the growth. An array with three dimensions: stock, year and iteration.

C_flbeia: Catches by fleets and stock. An array with three dimensions: stock, year and iteration.

L_flbeia: Landings by fleets and stock. An array with three dimensions: stock, year and iteration.

D_flbeia: Discards by fleets and stock. An array with three dimensions: stock, year and iteration.

advSum, advSumQ: Data frame with the indicators related with the management advice (TAC). The
indicators are: catch, discards, discRat, landings, quotaUpt and tac.

bioSum, bioSumQ: Data frame with the biological indicators. The indicators are: biomass, catch, catch.iyv,
discards, disc.iyv, f, landings, land.iyv, rec and ssb.

fltSum, fltSumQ: Data frame with the indicators at fleet level. The indicators are: capacity, catch, costs,
discards, discRat, effort, fcosts, gva, income, landings, netProfit, nVessels, price, profits, quotaUpt,
salaries, vcosts and profitability.

fltStkSum, fltStkSumQ: Data frame with the indicators at fleet and stock level. The indicators are:
landings, discards, catch, price, quotaUpt, tacshare, discRat and quota.

npv: A data frame with the net present value per fleet over the selected range of years.

mtSum, mtSumQ: Data frame with the indicators at fleet. The indicators are: effshare, effort, income and
vcost.

mtStkSum, mtStkSumQ: Data frame with the indicators at fleet and metier level. The indicators are:
catch, discards, discRat, landings and price.

riskSum: A data frame with the risk indicators. The indicators are: pBlim, pBpa and pPrflim.

vesselSum, vesselSumQ: Data frame with the indicators at vessel level. The indicators are: catch, costs,
discards, discRat, effort, fcosts, gva, income, landings, netProfit, price, profits, quotaUpt, salaries,
vcosts and profitability.

vesselStkSum, vesselStkSumQ: Data frame with the indicators at vessel and stock level. The indicators
are: landings, discards, catch, price, quotaUpt, tacshare, discRat and quota.

ecoSum_damara: ecoSum built in the framework of Damara project.

vesselStkSum, vesselStkSumQ: Data frame with the indicators at vessel and stock level. The indicators
are: landings, discards, catch, price, quotaUpt, tacshare, discRat and quota.

The data frames can be of wide or long format. In long format all the indicators are in the same
column. There is one column, indicator, for the name of the indicator and a second one value for the
numeric value of the indicator. In the wide format each of the indicators correspond with one column in
the data frame. The long format it is recommendable to work with ggplot2 functions for example while
the wide format it is more efficient for memory allocation and speed of computations.

The quantile version of the summaries, fooQ, returns the quantiles of the indicators. In the long
format as many columns as elements in prob are created. The name of the columns are the elements in
prob preceded by a q. In the wide format for each of the indicators as many columns as elements in prob
are created. The names of the colums are the elements in prob preceded by q name of the indicator.

36



6.2 Plotting functions

Plotting functions to summarise the results of the FLBEIA output.

plotFLBiols: For each stock, returns a pdf with plots using FLBiols object. With plots on biomass in
numbers at age, mean weight at age, fecundity, natural mortality, maturity, spawning, recruitment
and spawning stock biomass.

plotFLFleets: For each fleet, returns a pdf with plots using FLFleets object. With plots on catch,
discards, landings, capacity, crewshare, effort, fcost, effshare, and for each metier of this fleet:
landings and discards at age in numbers and mean weight, alpha, beta and catch.q.

plotCatchFl: Returns a pdf with plots using FLFleets and advice objects. Whith plots on landings,
discards and price by fleet.

plotEco: For each fleet, returns a pdf with plots using FLFleets object. With plots on capacity, costs,
effort, profits by fleet.

6.3 Functions for joining iterations

joinIter function allows to join iterations of an FLBEIA output object with one unique iteration. This is
very usefull in case that the different iterations are run separately in a cluster and we want to join them
afterwards.

The call to joinIter function within FLBEIA is done as:

joinIter(object, files, directory, Niters, elements, advice.ext = , fleets.ctrl.ext =

Arguments description:

object: Character. Corresponds to the name of the object that must be ’joined’. This object must be
the output of BEIA function.

files: Character vector with the names of the files. It has to be noted that each of the files must contain
a single object.

directory: The directory where the files are stored. The default is the current directory.

Niters: Numeric vector with the number of iterations per object. If length = 1, then it is assumed that
all objects have the same number of iterations.

elements: The elements of the objects that must be joined. The default is to join all the elements.

advice.ext: The type of advice that is given. Options are: ’TAC’ (default value) or ’TAE’.

fleets.ctrl.ext: Character. Name of the object in fleets.ctrl that needs iterations to be joined.
Default is ’seasonal.share’.

Another alternative to join iterations is calculating summary statistics for each iteration and afterwards
joining the summary results.

++++ ver mail Leire Ibaibarriaga ++++
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A New FLR - S4 classes

A.1 FLBDsim class

FLBDsim class has been created in order to facilitate the simulation of population growth in populations
aggregated in biomass, i.e. g(.) in Equation 4. The population dynamics are simulated as follows:

By,s = By0,s0 + g(By0,s0) · εy,s − Cy0,s0 (34)

where B is the biomass, C the catch, y0 and s0 are the subscripts of previous season’s year and season
and ε is the uncertainty value in year y and season s. It is a S4 class and has 10 slots:

name, desc, range: Slots common to all FLR objects.

model: Character string or formula. If character, it must coincide with an already existing growth
model. If formula, the parameters must be slots in the object or elements of covar slot. Currently,
there is only one growth model available, ’PellaTom’ that corresponds with Pella-Tomlinson growth
model [Pella and Tomlinson, 1969].

biomass: FLQuant to store biomass in weight. The dimension in quant, unit and area must be equal
to 1 and in the rest of the dimensions it must be congruent with general simulation settings.

catch: FLQuant to store total catch in weight. The dimension in quant, unit and area must be equal
to 1 and in the rest of the dimensions it must be congruent with general simulation settings.

uncertainty: FLQuant to store the error that is multiplied to the point estimate of growth . The di-
mension in quant, unit and area must be equal to 1 and in the rest of the dimensions it must be
congruent with general simulation settings. Thus, a different error can be used for each year, season
and iteration.

params: An array to store the parameters of the model. The dimensions of the array are params, year,

season, iter. The dimension in year, season and iter must be congruent with general simulation
settings. Thus, a different set of parameters can be used for each year, season and iteration.

covar: An FLQuants object. The elements of the list are used to store covariates’ values and it is used
to apply growth models with covariates. Its functionality is the same as in FLSR object.

alpha: An array with dimension [year = ny, season = ns, iteration = ni] with year, season and
iteration dependent value bigger than one which indicates, in percentage, how big can be the biomass
in comparison with the carrying capacity.

A.2 FLSRSim class

FLSRsim class has been created in order to facilitate the simulation of recruitment in age structured
populations. The recruitment dynamics are simulated as follows:

Ry,s = Φ(Sy−tl0,s−tl1 , covarsy−tl0,s−tl1) · εy,s · ρy,s (35)

where Ry,s is the recruitment in year y and season s, Φ is the stock-recruitment model, tl0 and tl1 are the
year and season lag between spawning and recruitment, respectively, Sy−tl0,tl1 and covarsy−tl0,s−tl1 are
the stock index and covariates in year y − tl0 and season tl1, εy,s is the uncertainty value in year y and
season s and ρy,s is the proportion of recruitment that recruits in year y and season s and is produced
by stock index S in year y − tl0 and season tl1 .

name, desc, range: Slots common to all FLR objects.

rec: An FLQuant with dimension [1, ny, 1, ns, 1, ni] used to store recruitment.

ssb: An FLQuant with dimension [1, ny, 1, ns, 1, ni] used to store SSB or the stock index used in the
stock-recruitment relationship.

covar: An FLQuants to store the covariates used in the stock-recruitment relationship. For details on the
use of this slot look at the description of FLSR class.

uncertainty: An FLQuant with dimension [1, ny, 1, ns, 1, ni] used to store the uncertainty related to stock-
recruitment process. The content of this slot is multiplied to the point estimate of recruitment. As
its effect is multiplicative, then set it equal to 1 for all year, season and iteration if uncertainty is
not going to be considered around stock-recruitment curve.
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proportion: An FLQuant with dimension [1, ny, 1, ns, 1, ni] used to store the proportion of the recruit-
ment produced by stock index in year y − timelag[1, s] and season timelag[2, s] that recruits in
year y and season s.
The content of this slot is multiplied to the point estimate of recruitment. As its effect is multi-
plicative, then set it equal to 1 if all the recruitment produced by certain stock index is recruited
at the same time and set it equal to 0 if none of the recruitment produced by certain stock index is
recruited in that season.

model: Character string or formula. If character it specifies the name of the function used to simulate
the recruitment. If formula the left hand side of ∼ must be equal to rec and the elements in right
hand side must be among ssb, covars and params.

params: An array with dimension [nparams, ny, ns, ni], thus, the parameters may be year, season
and iteration dependent. Year dimension in parameters may be useful to model regime shifts.

timelag: A matrix with dimension [2,ns]. This object indicates the time lag between spawning and
recruitment in each season. For each season, the element in the first row indicates the age at
recruitment and the element in the second row indicates the season at which the recruitment was
spawn.

B Graphical representation of FLR objects

Figure B.1: FLBiol object
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Figure B.2: FLFleetExt object

Figure B.3: FLSRsim object
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Figure B.4: FLBDsim object

Figure B.5: FLIndex object
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Figure B.6: FLStock object
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C Graphical representation of control objects

Table C.1: Description of all the optional arguments for main.ctrl object (of class list). The arguments with * are compulsory arguments.
Argument class Dimension Values Required for

sim.years* numeric vector 2 (initial,final) any in year range

Table C.2: Description of all the optional arguments for biols.ctrl object (of class list). The arguments with * are compulsory arguments.
Argument class Dimension Values Required for

[[st]]$growth.model* character 1 ’fixedPopulation’,’ASPG’ BDPG
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Table C.3: Description of all the optional arguments for fleets.ctrl object (of class list). In the table we assume that stk is the name of the stock and
fl the name of the fleet. The arguments with * are compulsory arguments.

Argument class Dimension Values Required for
catch.treshold FLQuant [nst,ny,1,ns,1,ni] Proportions in [0,1] range SMFB, SSFB
seasonal.share[[st]] FLQuant [nst,ny,1,ns,1,ni] Proportionsin [0,1] (sum along seasons = 1) SMFB, SSFB

[[fl]]$effort.model* character 1 ’fixedEffort’,’SMFB’,’SSFB’,
’MaxProfit’, ’MaxProfitSeq’

[[fl]]$restriction character 1 ’catch’,’landings’ SMFB, SSFB
[[fl]]$effort.rest character 1 ’max’,’min’,’mean’,’prev’,stock.name SMFB, SSFB
[[fl]]$effectiveDay.perc FLQuant [1,ny,1,ns,1,ni] Proportions in [0,1] SSFB

[[fl]]$effort.realloc character 1 NULL,’curr.eff’ SSFB

[[fl]]$stk.cnst character any names of the stocks MaxProfit, ’MaxProfitSeq’
[[fl]]$effort.range matrix matrix (nmt,2); colnames=c(’min’,’max’) MaxProfit, ’MaxProfitSeq’

[[fl]]$capital.model* character 1 ’fixedCapital’,’SCD’

[[fl]][[st]]$catch.model* character 1 ’cobbDouglasBio’,’cobbDouglasAge’,
’seasonshare’

[[fl]][[st]]$catch.dependence1 character nfl fleet.name seasonShare

[[fl]][[st]]$TAC.OS.model character 1 ’TAC.OS.triangCond’ SMFB, MaxProfit, ’MaxProfitSeq’
[[fl]][[st]]$TAC.OS.triangCond.params named numeric vector 3 (min,max,mode) SMFB, MaxProfit, ’MaxProfitSeq’
[[fl]][[st]]$discard.TAC.OS logical 1 ’TRUE’ (TAC overshoot is discarded),

’FALSE’ (TAC overshoot is included in landings) SMFB, MaxProfit, ’MaxProfitSeq’

[[fl]][[st]]$price.model* character 1 ’fixedPrice’, ’elasticPrice’
[[fl]][[st]]$pd.els numeric array [na,ns,ni] elasticPrice

[[fl]][[st]]$pd.La0 numeric array [na,ns,ni] elasticPrice

[[fl]][[st]]$pd.Pa0 numeric array [na,ns,ni] elasticPrice

[[fl]][[st]]$pd.total logical 1 ’TRUE’ (if depending on total catch), ’FALSE’ elasticPrice

nst: number of stocks
nfl: number of fleets
nmt: number of metiers in ’fl’
na: number of age clases
ny: number of years
ns: number of seasons
ni: number of iterations
1If defined, takes the same seasonal share as the one of fleet fleet.name.

Table C.4: Description of all the optional arguments for covars.ctrl object (of class list). In the table we assume that cv is the name of the covariate.
The arguments with * are compulsory arguments.

Argument class Dimension Values Required for

[[cv]]$process.model* character 1 ’fixedCovar’,’ssb.get’
[[cv]]$ssb.stock character 1 stock.name ssb.get

[[cv]]$spwn.season numeric 1 season ssb.get

[[cv]]$sr.covar character 1 stock.name ssb.get
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Table C.5: Description of all the optional arguments for obs.ctrl object (of class list). In the table we assume that stk is the name of the stock and id

the name of the index. The arguments with * are compulsory arguments.
Argument class Dimension Values Required for

[[st]]$stkObs$stkObs.model* character 1 ’NoObsStock’,’perfectObs’, ’age2ageDat’,’age2agePop’,
’age2bioDat’,’age2bioPop’,’bio2bioDat’,’bio2bioPop’

[[st]]$stkObs$TAC.ovrsht array [1,ny] In percentage per unit age2ageDat,age2bioDat,bio2bioDat
[[st]]$stkObs$ages.error2 array [na,na,ny,ni] In percentage per unit age2ageDat,age2agePop
[[st]]$stkObs$nmort.error FLQuant [na,ny,1,1,1,ni] any age2ageDat

[[st]]$stkObs$mat.error FLQuant [na,ny,1,1,1,ni] any age2ageDat

[[st]]$stkObs$stk.nage.error FLQuant [na,ny,1,1,1,ni] any age2agePop

[[st]]$stkObs$stk.wgt.error FLQuant [na,ny,1,1,1,ni] any age2agePop

[[st]]$stkObs$stk.bio.error FLQuant [1,ny,1,1,1,ni] any age2bioPop,bio2bioDat,bio2bioPop
[[st]]$stkObs$land.nage.error FLQuant [na,ny,1,1,1,ni] any age2ageDat

[[st]]$stkObs$land.wgt.error FLQuant [na,ny,1,1,1,ni] any age2ageDat

[[st]]$stkObs$land.bio.error FLQuant [1,ny,1,1,1,ni] any age2bioDat,bio2bioDat,bio2bioPop
[[st]]$stkObs$disc.nage.error FLQuant [na,ny,1,1,1,ni] any age2ageDat

[[st]]$stkObs$disc.wgt.error FLQuant [na,ny,1,1,1,ni] any age2ageDat

[[st]]$stkObs$disc.bio.error FLQuant [1,ny,1,1,1,ni] any age2bioDat,bio2bioDat,bio2bioPop

[[st]]$indObs[[id]]$indObs.model* character 1 ’NoObsIndex’,’NoObservation’,’ageInd’, ’bioInd’

na: number of age clases
ny: number of years
ni: number of iterations
2For each year and iteration, there is a square matrix whose column elements quantify the probability that a fish of age a is classified as having any age between
min(age) and max(age).

Table C.6: Description of all the optional arguments for assess.ctrl object (of class list). In the table we assume that stk is the name of the stock. The
arguments with * are compulsory arguments.

Argument class Dimension Values Required for

[[st]]$assess.model* character 1 ’NoAssessment’,’FLXSAnew’,...
[[st]]$control control object Depends on the selected assessment model assess.ctrl[[st]]$assess.model

(e.g. FLXSA.control() for XSA assessment)
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Table C.7: Description of all the optional arguments for advice.ctrl object (of class list). In the table we assume that stk is the name of the stock and
id the name of the index. The arguments with * are compulsory arguments.

Argument class Dimension Values Required for

[[st]]$HCR.model* character 1 ’fixedAdvice’,’annualTAC’,’IcesHCR’,’FroeseHCR’,
’annexIVHCR’,’ghlHCR’,’aneHCRE’,’neaMAC_ltmp’,
’F2CatchHCR’,’little2011HCR’,’pidHCR’,’pidHCRtarg’,
’MAPHCR’,’CFPMSYHCR’,’MultiStockHCR’

[[st]]$AdvCatch logical 1 ’TRUE’ (TAC in terms of catch), annualTAC, IcesHCR, CFPMSYHCR,
’FALSE’ (TAC in terms of landings) MAPHCR, F2CatchHCR

[[st]]$nyears numeric 1 season.name annualTAC, IcesHCR, F2CatchHCR,
MultiStockHCR

[[st]]$wts.nyears numeric 1 season.name annualTAC, IcesHCR, MAPHCR,
CFPMSYHCR, F2CatchHCR, MultiStockHCR

[[st]]$fbar.nyears numeric 1 season.name annualTAC, IcesHCR, MAPHCR,
CFPMSYHCR, F2CatchHCR, MultiStockHCR

[[st]]$f.rescale logical 1 ’TRUE’ (???), ’FALSE’ annualTAC, IcesHCR, MAPHCR,
CFPMSYHCR, F2CatchHCR, MultiStockHCR

[[st]]$disc.nyears numeric 1 annualTAC, CFPMSYHCR
[[st]]$fwd.control fwdBDcontrol annualTAC

[[st]]$sr$model character 1 SR model name annualTAC, IcesHCR, MAPHCR,
F2CatchHCR, MultiStockHCR

[[st]]$sr$params1 FLPar [npar,ni] annualTAC, IcesHCR, MAPHCR,
CFPMSYHCR, F2CatchHCR, MultiStockHCR

[[st]]$sr$years1 named numeric vector 2 (y.rm, num.years) annualTAC, IcesHCR, MAPHCR,
CFPMSYHCR, F2CatchHCR, MultiStockHCR

[[st]]$growth.years2 named numeric vector 2 (y.rm, num.years) annualTAC, IcesHCR, CFPMSYHCR,
F2CatchHCR, MultiStockHCR

[[st]]$ref.pts matrix [nrp,ni] IcesHCR, FroeseHCR, annexIVHCR,
ghlHCR, MAPHCR, CFPMSYHCR,
F2CatchHCR, little2011HCR, pidHCR,
pidHCRtarg, MultiStockHCR

[[st]]$intermediate.year character 1 ’Fsq’ or any IcesHCR, neaMAC_ltmp, F2CatchHCR,
MultiStockHCR

[[st]]$index character 1 index.name annexIVHCR, little2011HCR, pidHCR,
pidHCRtarg

[[st]]$type numeric 1 2 or 4 annexIVHCR

[[st]]$N numeric 1 MAPHCR,CFPMSYHCR
[[st]]$stocksInHCR vector any names of the stocks to be taken into account MultiStockHCR

npar: number of parameters in the SR model selected for stock st.
nrp: number of reference points required for the HCR selected for stock st.
ny: number of years
ni: number of iterations
1Optional argument for the function.
2Used only for stocks aggregated in biomass.
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D Smart conditioning - function’s arguments description

Table D.1: Description of the arguments of the function create.biols.data. In the table we assume that stk is the name of the stock. All the arguments
are required.

Argument class Dimension Definition
yrs vector 3 c( first.yr, proj.yr, last.yr)

first.yr numeric 1 First year of simulation
proj.yr numeric 1 First year of projection
last.yr numeric 1 Last year of projection

ni numeric 1 Number of iterations
ns numeric 1 Number of seasons
stks.data list number of stocks List with the name of the stocks and the following elements:

stk.unit numeric 1 Number of units
stk.age.min numeric 1 Minimum age
stk.age.max numeric 1 Maximum age
stk n.flq FLQuant [na,ny(hist),1/nu(stock),1/ns,1/ni] Abundance in numbers at age
stk wt.flq FLQuant [na,ny(hist),1/nu(stock),1/ns,1/ni] Weight at age
stk m.flq FLQuant [na,ny(hist),1/nu(stock),1/ns,1/ni] Natural mortality mortality rate
stk fec.flq FLQuant [na,ny(hist),1/nu(stock),1/ns,1/ni] Fecundity
stk mat.flq FLQuant [na,ny(hist),1/nu(stock),1/ns,1/ni] Percentage of mature individuals
stk spwn.flq FLQuant [na,ny(hist),1/nu(stock),1/ns,1/ni] Proportion of time step at spawning
stk range.min numeric 1 Minimum age
stk range.max numeric 1 Maximum age
stk range.plusgroup numeric 1 Plusgroup age
stk range.minyear numeric 1 Minimum year
stk range.maxyear numeric 1 Maximum year
stk range.minfbar numeric 1 Minimum age for calculating average fishing mortality
stk range.maxfbar numeric 1 Maximum age for calculating average fishing mortality
stk biol.proj.avg.yrs vector any Historic years to calculate averages (in spwn, fec, m and wt)

for the projection period

na: number of age (from min.age to max.age)
ny(hist): number of historic years (from first.yr to proj.yr-1)
1/nu(stock): 1 or number of units of the stock
1/ns: 1 or number of seasons
1/ni: 1 or number of iterations

48



Table D.2: Description of the arguments of the function create.SRs.data. In the table we assume that stk is the name of the stock. The arguments with
superscript * are optional arguments.

Argument class Dimension Definition
yrs vector 3 c( first.yr, proj.yr, last.yr)

first.yr numeric 1 First year of simulation
proj.yr numeric 1 First year of projection
last.yr numeric 1 Last year of projection

ni numeric 1 Number of iterations
ns numeric 1 Number of seasons
stks.data list number of stocks List with the name of the stocks and the following elements:

stk.unit numeric 1 Number of units
stk.age numeric 1 Number of age classes
stk sr.model character 1 Name of the SR model
stk params.n vector 1 Number of parameters
stk params.name vector stk params.n Name of the parameters
stk params.array array [stk params.n,ny,ns,1/ni] Parameter values
stk rec.flq FLQuant [1,ny(hist),1/nu(stock),1/ns,1/ni] Recruitment values
stk ssb.flq FLQuant [1,ny(hist),1/nu(stock),1/ns,1/ni] Spawning stock values

stk uncertainty.flq* FLQuant [1,ny,1/nu(stock),1/ns,1/ni] Uncertainty
stk proportion.flq FLQuant [1,ny,1/nu(stock),1/ns,1/ni] Recruitment distribution in each time step. For details see FLSRsim

stk prop.avg.yrs vector any Historical years to calculate the proportion average
stk timelag.matrix matrix (2,ns) Timelag between the spawning an recruitment (time.lag.yr, time.lag.ns)

For details see FLSRsim

stk range.min numeric 1 Minimum age
stk range.max numeric 1 Maximum age
stk range.plusgroup numeric 1 Plusgroup age
stk range.minyear numeric 1 Minimum year

na: number of age (from min.age to max.age)
ny(hist): number of historic years (from first.yr to proj.yr-1)
ny: number of years (from first.yr to last.yr)
1/nu(stock): 1 or number of units of the stock
1/ns: 1 or number of seasons
1/ni: 1 or number of iterations
ns: number of seasons
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Table D.3: Description of the arguments of the function create.BDs.data. In the table we assume that stk is the name of the stock. The arguments with
* are optional arguments.

Argument class Dimension Definition
yrs vector 3 c( first.yr, proj.yr, last.yr)

first.yr numeric 1 First year of simulation
proj.yr numeric 1 First year of projection
last.yr numeric 1 Last year of projection

ni numeric 1 Number of iterations
ns numeric 1 Number of seasons
stks.data list number of stocks List with the name of the stocks and the following elements:

stk.unit numeric 1 Number of units
stk bd.model character 1 Name of the BD model
stk params.name vector np Name of the parameters
stk params.array vector np Parameter values
stk biomass.flq FLQuant [1,ny(hist),1/nu(stock),1/ns,1/ni] Biomass values
stk catch.flq FLQuant [1,ny(hist),1/nu(stock),1/ns,1/ni] Catch values
stk range.min numeric 1 Minimum age
stk range.max numeric 1 Maximum age
stk range.plusgroup numeric 1 Plusgroup age
stk range.minyear numeric 1 Minimum year
stk alpha numeric 1 Maximum variability of carrying capacity

stk gB.flq* FLQuant [1,ny(hist),1/nu(stock),1/ns,1/ni] Surplus production values

stk uncertainty.flq* FLQuant [1,ny,1/nu(stock),1/ns,1/ni] Uncertainty

na: number of age (from min.age to max.age)
ny(hist): number of historic years (from first.yr to proj.yr-1)
ny: number of years (from first.yr to last.yr)
1/nu(stock): 1 or number of units of the stock
1/ns: 1 or number of seasons
1/ni: 1 or number of iterations
np: number of parameters in BD model
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Table D.4: Description of the arguments of the function create.fleets.data. In the table we assume that stk is the name of the stock,fl the name of
the fleet and met the name of the metier. The arguments with * are optional arguments.

Argument class Dimension Definition
yrs vector 3 c( first.yr, proj.yr, last.yr)

first.yr numeric 1 First year of simulation
proj.yr numeric 1 First year of projection
last.yr numeric 1 Last year of projection

ni numeric 1 Number of iterations
ns numeric 1 Number of seasons
fls.data list number of fleets List with the name of the fleets and the following elements:

fl.met vector number of metiers in ’fl’ Name of the metiers in the fleet ’fl’
fl.met.stks vector number of stocks in ’fl.met’ Name of the stocks in the metier ’met’ and fleet ’fl’
fl effort.flq FLQuant [na,ny(hist),1/nu(stock),1/ns,1/ni] Effort for ’fl’ fleet

fl capacity.flq* FLQuant [na,ny(hist),1/nu(stock),1/ns,1/ni] Capacity of ’fl’ fleet

fl fcost.flq* FLQuant [na,ny(hist),1/nu(stock),1/ns,1/ni] Fixed costs for ’fl’ fleet

fl crewshare.flq* FLQuant [na,ny(hist),1/nu(stock),1/ns,1/ni] Crewshare for ’fl’ fleet
fl.met effshare.flq FLQuant [na,ny(hist),1/nu(stock),1/ns,1/ni] Effort share for fl’ fleet and ’met’ metier

fl.met vcost.flq* FLQuant [na,ny(hist),1/nu(stock),1/ns,1/ni] Variable costs for ’fl’ fleet and ’met’ metier
fl.met.stk landings.n.flq FLQuant [na,ny(hist),1/nu(stock),1/ns,1/ni] Landings in numbers at age for fl’ fleet,’met’ metier and ’stk’ stock

fl.met.stk landings.wt.flq* FLQuant [na,ny(hist),1/nu(stock),1/ns,1/ni] Mean weight of landings at age for ’fl’ fleet and ’met’ metier

fl.met.stk discards.n.flq* FLQuant [na,ny(hist),1/nu(stock),1/ns,1/ni] Discards in numbers at age for ’fl’ fleet and ’met’ metier

fl.met.stk discards.wt.flq* FLQuant [na,ny(hist),1/nu(stock),1/ns,1/ni] Mean weight at age in discards for ’fl’ fleet and ’met’ metier

fl.met.stk price.flq* FLQuant [na,ny(hist),1/nu(stock),1/ns,1/ni] Price at age for ’stk’ stock in ’fl’ fleet and ’met’ metier

fl.met.stk alpha.flq* FLQuant [na,ny,1/nu(stock),1/ns,1/ni] Cobb-Douglas alpha parameter for ’fl’ fleet, ’met’ metier and ’stk’ stock

fl.met.stk beta.flq* FLQuant [na,ny,1/nu(stock),1/ns,1/ni] Cobb-Douglas beta parameter for ’fl’ fleet, ’met’ metier and ’stk’ stock

fl.met.stk catch.q.flq* FLQuant [na,ny,1/nu(stock),1/ns,1/ni] Cobb-Douglas catch.q parameter for ’fl’ fleet, ’met’ metier and ’stk’ stock
fl proj.avg.yrs vector any Historic years to calculate averages (in effort, fcost, crewshare, and capacity)

in ’fl’ fleet
for the projection period

fl.met proj.avg.yrs* vector any Historic years to calculate averages (in effshare and vcost) in ’fl’ fleet and
’met’ metier for the projection period

fl.met.stk proj.avg.yrs* vector any Historic years to calculate averages (in landings.wt, discards.wt, landings.sel,
discards.sel, alpha, beta and catch.q) in ’fl’ fleet, ’met’ metier and ’stk’ stock
for the projection period

stks.data list number of stocks List with the name of the stocks and the following elements:
stk.unit numeric 1 Number of units
stk.age numeric 1 Number of age clases
stk.age.min numeric 1 Minimum age
stk.age.max numeric 1 Maximum age

stk wt.flq* FLQuant [na,ny(hist),1/nu(stock),1/ns,1/ni] Weight at age. Only required if fl.met.stk landings.wt is not defined

stk n.flq* FLQuant [na,ny(hist),1/nu(stock),1/ns,1/ni] Numbers at age in the population (for stocks modelled in numbers at age).
Only required if Cobb-Douglas parameters are not defined

stk gB.flq* FLQuant [na,ny(hist),1/nu(stock),1/ns,1/ni] Biomass growth (for stocks modelled in biomass).
Only required if Cobb-Douglas parameters are not defined

na: number of age (from min.age to max.age)
ny(hist): number of historic years (from first.yr to proj.yr-1)
ny: number of years (from first.yr to last.yr)
1/nu(stock): 1 or number of units of the stock
1/ns: 1 or number of seasons
1/ni: 1 or number of iterations
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Table D.5: Description of the arguments of the function create.indices.data. In the table we assume that stk is the name of the stock and ind the
name of the index. The arguments with * are optional arguments.

Argument class Dimension Definition
yrs vector 3 c( first.yr, proj.yr, last.yr)

first.yr numeric 1 First year of simulation
proj.yr numeric 1 First year of projection
last.yr numeric 1 Last year of projection

ni numeric 1 Number of iterations
ns numeric 1 Number of seasons
stks.data list number of stocks List with the name of the stocks with indices and the following elements:

stk.unit numeric 1 Number of units
stk.age numeric 1 Number of age classess
stk indices character 1 Name of indices for the stock ’stk’

stk ind type* character 1 Type of index

stk ind distribution* character 1 Name of the statistical distribution of the ’ind’ index values for stock ’stk’
stk ind index.flq FLQuant [na,ny,1/nu(stock),1/ns,1/ni] Historical index data for index ’ind’ of stock ’stk’

stk ind index.var.flq* FLQuant [na,ny,1/nu(stock),1/ns,1/ni] Variability in ’ind’ index of stock ’stk’

stk ind index.q.flq* FLQuant [na,ny,1/nu(stock),1/ns,1/ni] Catchability for ’ind’ index of stock ’stk’

stk ind catch.n.flq* FLQuant [na,ny,1/nu(stock),1/ns,1/ni] Catch at age in numbers for ’ind’ index of stock ’stk’

stk ind catch.wt.flq* FLQuant [na,ny,1/nu(stock),1/ns,1/ni] Mean weight at age in the catch for ’ind’ index of stock ’stk’

stk ind effort.flq* FLQuant [na,ny,1/nu(stock),1/ns,1/ni] Effort for ’ind’ index of stock ’stk’

stk ind sel.pattern.flq* FLQuant [na,ny,1/nu(stock),1/ns,1/ni] Selection pattern for ’ind’ index of stock ’stk’

stk ind range.min* FLQuant [na,ny,1/nu(stock),1/ns,1/ni] Minimum age in ’ind’ index of stock ’stk’

stk ind range.max* FLQuant [na,ny,1/nu(stock),1/ns,1/ni] Maximum age in ’ind’ index of stock ’stk’

stk ind range.plusgroup* FLQuant [na,ny,1/nu(stock),1/ns,1/ni] Plusgroup age in ’ind’ index of stock ’stk’

stk ind range.minyear* FLQuant [na,ny,1/nu(stock),1/ns,1/ni] First year with ’ind’ index data of stock ’stk’

stk ind range.maxyear* FLQuant [na,ny,1/nu(stock),1/ns,1/ni] Last year with ’ind’ index data of stock ’stk’

stk ind range.startf* FLQuant [na,ny,1/nu(stock),1/ns,1/ni] Minimum age for calculating average fishing mortality for ’ind’ index of stock ’stk’

stk ind range.endf* FLQuant [na,ny,1/nu(stock),1/ns,1/ni] Maximum age for calculating average fishing mortality for ’ind’ index of stock ’stk’

na: number of age (from min.age to max.age)
ny: number of years (from first.yr to last.yr)
1/nu(stock): 1 or number of units of the stock
1/ns: 1 or number of seasons
1/ni: 1 or number of iterations
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Table D.6: Description of the arguments of the function create.advice.data. In the table we assume that stk is the name of the stock. The arguments
with * are optional arguments.

Argument class Dimension Definition
yrs vector 3 c( first.yr, proj.yr, last.yr)

first.yr numeric 1 First year of simulation
proj.yr numeric 1 First year of projection
last.yr numeric 1 Last year of projection

ni numeric 1 Number of iterations
ns numeric 1 Number of seasons
stks.data list number of stocks List with the name of the stocks with indices and the following elements:

stk advice.TAC.flq* FLQuant [na,ny,1/nu(stock),1/ns,1/ni] TAC of the stock ’stk’

stk advice.TAE.flq* FLQuant [na,ny,1/nu(stock),1/ns,1/ni] TAE of the stock ’stk’

stk advice.quota.share.flq* FLQuant [na,ny,1/nu(stock),1/ns,1/ni] Quota share of the stock ’stk’

stk advice.avg.yrs* FLQuant any Mean weight at age in the catch for ’ind’ index of stock ’stk’

fleets* FLQuant Only required if stk_advice.quota.share is not specified.
Can be the output of create_fleets_FLBEIA function

na: number of age (from min.age to max.age)
ny: number of years (from first.yr to last.yr)
1/nu(stock): 1 or number of units of the stock
1/ns: 1 or number of seasons
1/ni: 1 or number of iterations

Table D.7: Description of the arguments of the function create.list.stks.flqa. In the table we assume that stk is the name of the stock.
Argument class Dimension Definition
stks vector number of stocks Name of all the stocks
yrs vector 3 c( first.yr, proj.yr, last.yr)

first.yr numeric 1 First year of simulation
proj.yr numeric 1 First year of projection
last.yr numeric 1 Last year of projection

ni numeric 1 Number of iterations
ns numeric 1 Number of seasons
list.stks.unit list number of stocks List with the name of the stocks and each stock contains the number

of units
list.stks.age list number of stocks List with the name of the stocks and each stock contains a vector

with minimum age (min.age) and maximum age (max.age)
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Table D.8: Description of the arguments of the function create.list.stks.flq. In the table we assume that stk is the name of the stock.
Argument class Dimension Definition
stks vector number of stocks Name of all the stocks
yrs vector 3 c( first.yr, proj.yr, last.yr)

first.yr numeric 1 First year of simulation
proj.yr numeric 1 First year of projection
last.yr numeric 1 Last year of projection

ni numeric 1 Number of iterations
ns numeric 1 Number of seasons
list.stks.unit list number of stocks List with the name of the stocks and

each stock contains the number of units

Table D.9: Description of the arguments of the function calculate.CDparam. In the table we assume that stk is the name of the stock. The arguments
with * are optional arguments.

Argument class Dimension Definition
stk.n FLQuant [na,ny(hist),1/nu(stock),1/ns,1/ni] Abundance in numbers at age
landings.n FLQuant [na,ny(hist),1/nu(stock),1/ns,1/ni] Landings in numbers at age
discards.n FLQuant [na,ny(hist),1/nu(stock),1/ns,1/ni] Discards in numbers at age
effort FLQuant [1,ny(hist),1/nu(stock),1/ns,1/ni] Effort
effshare FLQuant [1,ny(hist),1/nu(stock),1/ns,1/ni] Effort share
age.min numeric 1 Minimum age
age.max numeric 1 Maximum age
flqa FLQuant [na,ny(hist),1/nu(stock),1/ns,1/ni] An FLQuant object
flq FLQuant [1,ny(hist),1/nu(stock),1/ns,1/ni] An FLQuant object

largs* list 1 A list with extra optional arguments:
stk.gB numeric 1 Surplus production (only for stocks in biomass)

na: number of age (from min.age to max.age)
ny(hist): number of historic years (from first.yr to proj.yr-1)
1/nu(stock): 1 or number of units of the stock
1/ns: 1 or number of seasons
1/ni: 1 or number of iterations
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