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Abstract

The document explains the approach being developed by a4a to integrate uncertainty in natural
mortality into stock assessment and advice. It presents a mixture of text and code, where the first
explains the concepts behind the methods, while the last shows how these can be run with the software
provided.
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1 Background

In the a4a natural mortality is dealt with as an external parameter to the stock assessment model.
The rationale to modelling natural mortality is similar to that of growth: one should be able to grab
information from a range of sources and feed it into the assessment.

The mechanism used by a4a is to build an interface that makes it transparent, flexible and
hopefully easy to explore different options. In relation to natural mortality it means that the analyst
should be able to use distinct models like Gislasson’s, Charnov’s, Pauly’s, etc in a coherent framework
making it possible to compare the outcomes of the assessment.

Within the a4a framework, the general method for inserting natural mortality in the stock as-
sessment is to:

• Create an object of class a4aM which holds the natural mortality model and parameters.

• Add uncertainty to the parameters in the a4aM object.

• Apply the m() method to the a4aM object to create an age or length based FLQuant object of
the required dimensions.

The resulting FLQuant object can then be directly inserted into an FLStock object to be used
for the assessment.

In this section we go through each of the steps in detail using a variety of different models.

2 License, documentation and development status

The software is released under the EUPL 1.1.
For more information on the a4a methodologies refer to Jardim, et.al, 2014, Millar, et.al, 2014

and Scott, et.al, 2016.
Documentation can be found at http://flr-project.org/FLa4a. You are welcome to:

• Submit suggestions and bug-reports at: https://github.com/flr/FLa4a/issues

• Send a pull request on: https://github.com/flr/FLa4a/

• Compose a friendly e-mail to the maintainer, see ‘packageDescription(’FLa4a’)‘

3 Installing and loading libraries

To run the FLa4a methods the reader will need to install the package and its dependencies and load
them. Some datasets are distributed with the package and as such need to be loaded too.

# from CRAN

install.packages(c("copula", "triangle", "coda"))

# from FLR

install.packages(c("FLCore", "FLa4a"), repos = "http://flr-project.org/R")

# libraries

library(FLa4a)

library(XML)

library(reshape2)

library(latticeExtra)

# datasets

data(ple4)

data(ple4.indices)

data(ple4.index)

data(rfLen)

packageVersion("FLCore")

## [1] '2.6.4'

packageVersion("FLa4a")

## [1] '1.1.2'
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4 How to read this document

The target audience for this document are readers with some experience in R and some background
on stock assessment.

The document explains the approach being developed by a4a for fish stock assessment and scien-
tific advice. It presents a mixture of text and code, where the first explains the concepts behind the
methods, while the last shows how these can be run with the software provided. Moreover, having
the code allows the reader to copy/paste and replicate the analysis presented here.

The sections and subsections are as independent as possible, so it can be used as a reference
document for the FLa4a.

Finally, this is a live document which will be updated and released often.

5 a4aM - The M class

Natural mortality is implemented in a class named a4aM . This class is made up of three objects of
the class FLModelSim. Each object is a model that represents one effect: an age or length effect, a
scaling (level) effect and a time trend, named shape, level and trend, respectively. The impact of
the models is multiplicative, i.e. the overal natural mortality is given by shape x level x trend . Check
the help files for more information.

showClass("a4aM")

## Class "a4aM" [package "FLa4a"]

##

## Slots:

##

## Name: shape level trend name desc range

## Class: FLModelSim FLModelSim FLModelSim character character numeric

##

## Extends: "FLComp"

The a4aM constructor requires that the models and parameters are provided. The default method
will build each of these models as a constant value of 1.

As a simple example, the usual ”0.2” guessestimate could be set up by setting the level model
to have a single parameter with a fixed value, while the other two models, shape and trend , have a
default value of 1 (meaning that they have no effect).

mod02 <- FLModelSim(model = ~a, params = FLPar(a = 0.2))

m1 <- a4aM(level = mod02)

m1

## a4aM object:

## shape: ~1

## level: ~a

## trend: ~1

More interesting natural mortality shapes can be set up using biological knowledge. The following
example uses an exponential decay over ages (implying that the resulting FLQuant generated by the
m() method will be age based). We also use Jensen’s second estimator (Kenshington, 2013) as a
scaling level model, which is based on the von Bertalanffy K parameter, M = 1.5K.

shape2 <- FLModelSim(model = ~exp(-age - 0.5))

level2 <- FLModelSim(model = ~1.5 * k, params = FLPar(k = 0.4))

m2 <- a4aM(shape = shape2, level = level2)

m2

## a4aM object:

## shape: ~exp(-age - 0.5)

## level: ~1.5 * k

## trend: ~1

Note that the shape model has age as a parameter of the model but is not set using the params

argument.
The shape model does not have to be age-based. For example, here we set up a shape model

using Gislason’s second estimator (Kenshington, 2013): Ml = K(Linf
l

)1.5. We use the default level

and trend models.
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shape_len <- FLModelSim(model = ~K * (linf/len)^1.5, params = FLPar(linf = 60,

K = 0.4))

m_len <- a4aM(shape = shape_len)

Another option is to model how an external factor may impact the natural mortality. This can be
added through the trend model. Suppose natural mortality can be modelled with a dependency on
the NAO index, due to some mechanism that results in having lower mortality when NAO is negative
and higher when it’s positive. In this example, the impact is represented by the NAO value on the
quarter before spawning, which occurs in the second quarter.

We use this to make a complicated natural mortality model with an age based shape model, a
level model based on K and a trend model driven by NAO, where mortality increases by 50% if NAO
is positive on the first quarter.

# Get NAO

nao.orig <- read.table("https://www.esrl.noaa.gov/psd/data/correlation/nao.data",

skip = 1, nrow = 62, na.strings = "-99.90")

dnms <- list(quant = "nao", year = 1948:2009, unit = "unique", season = 1:12,

area = "unique")

# Build an FLQuant from the NAO data

nao.flq <- FLQuant(unlist(nao.orig[, -1]), dimnames = dnms, units = "nao")

# Build covar by calculating mean over the first 3 months

nao <- seasonMeans(nao.flq[, , , 1:3])

# Turn into Boolean

nao <- (nao > 0)

# Constructor

trend3 <- FLModelSim(model = ~1 + b * nao, params = FLPar(b = 0.5))

shape3 <- FLModelSim(model = ~exp(-age - 0.5))

level3 <- FLModelSim(model = ~1.5 * k, params = FLPar(k = 0.4))

m3 <- a4aM(shape = shape3, level = level3, trend = trend3)

m3

## a4aM object:

## shape: ~exp(-age - 0.5)

## level: ~1.5 * k

## trend: ~1 + b * nao

6 Adding uncertainty to natural mortality parameters
with a multivariate normal distribution

Uncertainty on natural mortality is added through uncertainty on the parameters.
In this section we’ll’ show how to add multivariate normal uncertainty. We make use of the class

FLModelSim method mvrnorm(), which is a wrapper for the method mvrnorm() distributed by the
package MASS.

We’ll create an a4aM object with an exponential shape, a level model based on k and temperature
(Jensen’s third estimator), and a trend model driven by the NAO (as above). Afterwards a variance-
covariance matrix for the level and trend models will be included. Finally, create an object with
100 iterations using the mvrnorm() method.

Create the object:

shape4 <- FLModelSim(model = ~exp(-age - 0.5))

level4 <- FLModelSim(model = ~k^0.66 * t^0.57, params = FLPar(k = 0.4, t = 10),

vcov = array(c(0.002, 0.01, 0.01, 1), dim = c(2, 2)))

trend4 <- FLModelSim(model = ~1 + b * nao, params = FLPar(b = 0.5), vcov = matrix(0.02))

m4 <- a4aM(shape = shape4, level = level4, trend = trend4)

# Call mvrnorm()

m4 <- mvrnorm(100, m4)

m4

## a4aM object:

## shape: ~exp(-age - 0.5)

## level: ~k^0.66 * t^0.57

## trend: ~1 + b * nao

Inspect the level model (for example):
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m4@level

## An object of class "FLModelSim"

## Slot "model":

## ~k^0.66 * t^0.57

##

## Slot "params":

## An object of class "FLPar"

## iters: 100

##

## params

## k t

## 0.39751(0.0467) 10.09195(0.9491)

## units: NA

##

## Slot "vcov":

## [,1] [,2]

## [1,] 0.002 0.01

## [2,] 0.010 1.00

##

## Slot "distr":

## [1] "norm"

Note the variance in the parameters:

params(trend(m4))

## An object of class "FLPar"

## iters: 100

##

## params

## b

## 0.46309(0.156)

## units: NA

Note the shape model has no parameters and no uncertainty:

params(shape(m4))

## An object of class "FLPar"

## [1] NA

## units: NA

In this particular case, the shape model will not be randomized because it doesn’t have a variance-
covariance matrix. Also note that because there is only one parameter in the trend model, the
randomization will use a univariate normal distribution.

The same model could be achieved by using mnrnorm() on each model component:

m4 <- a4aM(shape = shape4, level = mvrnorm(100, level4), trend = mvrnorm(100,

trend4))

7 Adding uncertainty to natural mortality parameters
with statistical copulas

We can also use copulas to add parameter uncertainty to the natural mortality model, similar to the
way we use them for the growth model in Section ??. As stated above these processes make use of
the methods implemented for the FLModelSim class.

In the following example we’ll use again Gislason’s second estimator, Ml = K(Linf
l

)1.5 and a
triangle copula to model parameter uncertainty. The method mvrtriangle() is used to create 1000
iterations.

linf <- 60

k <- 0.4

# vcov matrix (make up some values)

mm <- matrix(NA, ncol = 2, nrow = 2)
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# 10% cv

diag(mm) <- c((linf * 0.1)^2, (k * 0.1)^2)

# 0.2 correlation

mm[upper.tri(mm)] <- mm[lower.tri(mm)] <- c(0.05)

# a good way to check is using cov2cor

cov2cor(mm)

## [,1] [,2]

## [1,] 1.0000000 0.2083333

## [2,] 0.2083333 1.0000000

# create object

mgis2 <- FLModelSim(model = ~k * (linf/len)^1.5, params = FLPar(linf = linf,

k = k), vcov = mm)

# set the lower, upper and (optionally) centre of the parameters (without

# the centre, the triangle is symmetrical)

pars <- list(list(a = 55, b = 65), list(a = 0.3, b = 0.6, c = 0.35))

mgis2 <- mvrtriangle(1000, mgis2, paramMargins = pars)

mgis2

## An object of class "FLModelSim"

## Slot "model":

## ~k * (linf/len)^1.5

##

## Slot "params":

## An object of class "FLPar"

## iters: 1000

##

## params

## linf k

## 60.08371(2.1015) 0.40666(0.0752)

## units: NA

##

## Slot "vcov":

## [,1] [,2]

## [1,] 36.00 0.0500

## [2,] 0.05 0.0016

##

## Slot "distr":

## [1] "un <deprecated slot> triangle"

The resulting parameter estimates and marginal distributions can be seen in Figure 1 and 2.
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Figure 1: Parameter estimates for Gislason’s second natural mortality model from using a triangle dis-
tribution.
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Figure 2: Marginal distributions of the parameters for Gislason’s second natural mortality model using
a triangle distribution.

We now have a new model that can be used for the shape model. You can use the constructor or
the set method to add the new model. Note that we have a quite complex method now for M. A length
based shape model from Gislason’s work, Jensen’s third model based on temperature level and a
time trend depending on NAO. All of the component models have uncertainty in their parameters.

m5 <- a4aM(shape = mgis2, level = level4, trend = trend4)

# or

m5 <- m4

shape(m5) <- mgis2

8 Computing natural mortality time series - the ”m”
method

Now that we have set up the natural mortality a4aM model and added parameter uncertainty to
each component, we are ready to generate the FLQuant of natural mortality. For that we need the
m() method.

The m() method is the workhorse method for computing natural mortality. The method returns
an FLQuant that can be inserted in an FLStock for usage by the assessment method.

The size of the FLQuant object is determined by the min, max, minyear and maxyear elements of
the range slot of the a4aM object. By default the values of these elements are set to 0. Giving an
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FLQuant with length 1 in the quant and year dimension. The range slot can be set by hand, or by
using the rngquant() and rngyear() methods.

The name of the first dimension of the output FLQuant (e.g. ’age’ or ’len’) is determined by the
parameters of the shape model. If it is not clear what the name should be then the name is set to
’quant’.

Here we demonstrate m() using the simple a4aM object we created above that has constant
natural mortality.

Start with the simplest model:

m1

## a4aM object:

## shape: ~1

## level: ~a

## trend: ~1

Check the range:

range(m1)

## min max plusgroup minyear maxyear minmbar maxmbar

## 0 0 0 0 0 0 0

Simple - no ages or years:

m(m1)

## An object of class "FLQuant"

## , , unit = unique, season = all, area = unique

##

## year

## quant 0

## 0 0.2

##

## units: NA

Set the quant and year ranges:

range(m1, c("min", "max")) <- c(0, 7) # set the quant range

range(m1, c("minyear", "maxyear")) <- c(2000, 2010) # set the year range

range(m1)

## min max plusgroup minyear maxyear minmbar maxmbar

## 0 7 0 2000 2010 0 0

Create the object with the M estimates by age and year, note the name of the first dimension is
’quant’.

m(m1)

## An object of class "FLQuant"

## , , unit = unique, season = all, area = unique

##

## year

## quant 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

## 0 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

## 1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

## 2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

## 3 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

## 4 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

## 5 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

## 6 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

## 7 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

##

## units: NA

The next example has an age-based shape. As the shape model has ’age’ as a variable which is
not included in the FLPar slot it is used as the name of the first dimension of the resulting FLQuant .
Note that in this case the mbar values in the range become relevant, once that mbar is used to compute
the mean level. This mean level will match the value given by the level model. The mbar range can
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be changed with the rngmbar() method. We illustrate this by making an FLQuant with age varying
natural mortality.

Check the model and set the ranges:

m2

## a4aM object:

## shape: ~exp(-age - 0.5)

## level: ~1.5 * k

## trend: ~1

range(m2, c("min", "max")) <- c(0, 7) # set the quant range

range(m2, c("minyear", "maxyear")) <- c(2000, 2003) # set the year range

range(m2)

## min max plusgroup minyear maxyear minmbar maxmbar

## 0 7 0 2000 2003 0 0

m(m2)

## An object of class "FLQuant"

## , , unit = unique, season = all, area = unique

##

## year

## age 2000 2001 2002 2003

## 0 0.60000000 0.60000000 0.60000000 0.60000000

## 1 0.22072766 0.22072766 0.22072766 0.22072766

## 2 0.08120117 0.08120117 0.08120117 0.08120117

## 3 0.02987224 0.02987224 0.02987224 0.02987224

## 4 0.01098938 0.01098938 0.01098938 0.01098938

## 5 0.00404277 0.00404277 0.00404277 0.00404277

## 6 0.00148725 0.00148725 0.00148725 0.00148725

## 7 0.00054713 0.00054713 0.00054713 0.00054713

##

## units: NA

Note that the level value is:

predict(level(m2))

## iter

## 1

## 1 0.6

Which is the same as:

m(m2)["0"]

## An object of class "FLQuant"

## , , unit = unique, season = all, area = unique

##

## year

## age 2000 2001 2002 2003

## 0 0.6 0.6 0.6 0.6

##

## units: NA

This is because the mbar range is currently set to ”0” and ”0” (see above) and the mean natural
mortality value over this range is given by the level model.

We can change the mbar range:

range(m2, c("minmbar", "maxmbar")) <- c(0, 5)

range(m2)

## min max plusgroup minyear maxyear minmbar maxmbar

## 0 7 0 2000 2003 0 5

Which rescales the the natural mortality at age:

11



m(m2)

## An object of class "FLQuant"

## , , unit = unique, season = all, area = unique

##

## year

## age 2000 2001 2002 2003

## 0 2.2812888 2.2812888 2.2812888 2.2812888

## 1 0.8392392 0.8392392 0.8392392 0.8392392

## 2 0.3087389 0.3087389 0.3087389 0.3087389

## 3 0.1135787 0.1135787 0.1135787 0.1135787

## 4 0.0417833 0.0417833 0.0417833 0.0417833

## 5 0.0153712 0.0153712 0.0153712 0.0153712

## 6 0.0056547 0.0056547 0.0056547 0.0056547

## 7 0.0020803 0.0020803 0.0020803 0.0020803

##

## units: NA

Check that the mortality over the mean range is the same as the level model:

quantMeans(m(m2)[as.character(0:5)])

## An object of class "FLQuant"

## , , unit = unique, season = all, area = unique

##

## year

## age 2000 2001 2002 2003

## all 0.6 0.6 0.6 0.6

##

## units: NA

The next example uses a time trend for the trend model. We use the m3 model we made earlier.
The trend model for this model has a covariate, ’nao’. This needs to be passed to the m() method.
The year range of the ’nao’ covariate should match that of the range slot.

Simple, pass in a single nao value (only one year):

m(m3, nao = 1)

## An object of class "FLQuant"

## , , unit = unique, season = all, area = unique

##

## year

## age 0

## 0 0.9

##

## units: NA

Set ages:

range(m3, c("min", "max")) <- c(0, 7)

m(m3, nao = 0)

## An object of class "FLQuant"

## , , unit = unique, season = all, area = unique

##

## year

## age 0

## 0 0.60000000

## 1 0.22072766

## 2 0.08120117

## 3 0.02987224

## 4 0.01098938

## 5 0.00404277

## 6 0.00148725

## 7 0.00054713

##

## units: NA
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With ages and years - passing in the NAO data as numeric (1,0,1,0)

range(m3, c("minyear", "maxyear")) <- c(2000, 2003)

m(m3, nao = as.numeric(nao[, as.character(2000:2003)]))

## An object of class "FLQuant"

## , , unit = unique, season = all, area = unique

##

## year

## age 2000 2001 2002 2003

## 0 0.90000000 0.60000000 0.90000000 0.60000000

## 1 0.33109150 0.22072766 0.33109150 0.22072766

## 2 0.12180175 0.08120117 0.12180175 0.08120117

## 3 0.04480836 0.02987224 0.04480836 0.02987224

## 4 0.01648407 0.01098938 0.01648407 0.01098938

## 5 0.00606415 0.00404277 0.00606415 0.00404277

## 6 0.00223088 0.00148725 0.00223088 0.00148725

## 7 0.00082069 0.00054713 0.00082069 0.00054713

##

## units: NA

The final example show how m() can be used to make an FLQuant with uncertainty (see Figure 3).
We use the m4 object from earlier with uncertainty on the level and trend parameters.

range(m4, c("min", "max")) <- c(0, 7)

range(m4, c("minyear", "maxyear")) <- c(2000, 2003)

flq <- m(m4, nao = as.numeric(nao[, as.character(2000:2003)]))

flq

## An object of class "FLQuant"

## iters: 100

##

## , , unit = unique, season = all, area = unique

##

## year

## age 2000 2001 2002

## 0 2.9445899(0.368040) 1.9938585(0.188926) 2.9445899(0.368040)

## 1 1.0832541(0.135395) 0.7334996(0.069502) 1.0832541(0.135395)

## 2 0.3985069(0.049809) 0.2698394(0.025568) 0.3985069(0.049809)

## 3 0.1466025(0.018324) 0.0992684(0.009406) 0.1466025(0.018324)

## 4 0.0539320(0.006741) 0.0365188(0.003460) 0.0539320(0.006741)

## 5 0.0198405(0.002480) 0.0134345(0.001273) 0.0198405(0.002480)

## 6 0.0072989(0.000912) 0.0049423(0.000468) 0.0072989(0.000912)

## 7 0.0026851(0.000336) 0.0018182(0.000172) 0.0026851(0.000336)

## year

## age 2003

## 0 1.9938585(0.188926)

## 1 0.7334996(0.069502)

## 2 0.2698394(0.025568)

## 3 0.0992684(0.009406)

## 4 0.0365188(0.003460)

## 5 0.0134345(0.001273)

## 6 0.0049423(0.000468)

## 7 0.0018182(0.000172)

##

## units: NA

dim(flq)

## [1] 8 4 1 1 1 100
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Figure 3: Natural mortality with age and year trend.
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